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Abstract 

We propose a Laplace stochastic frontier model as an alternative to the traditional model 

with normal errors. An interesting feature of the Laplace model is that the distribution of 

inefficiency conditional on the composed error is constant for positive values of the composed 

error, but varies for negative values. Therefore, it may be ideally suited for analyzing industries 

with many forms on or close to the efficient frontier. A simulation study suggests that the model 

performs well relative to the normal-exponential model when the two-sided error is misspecified. 

A brief application to US Airlines is provided. 
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1 Introduction 

Given a sample of firm-level data, parametric stochastic frontier models specify production output 

(or cost) as the sum of a linear (in parameters) response function and an additively composed 

error, consisting of a two-sided error, representing noise, and a one-sided error, representing in-

efficiency. See, for example, Aigner, Lovell and Schmidt (1977), Battese and Coelli (1988, 1992) 

and Kumbhakar and Lovell (2001). It is often assumed that the two-sided error is normally dis-

tributed and the one-sided error is either truncated normal or exponential, leading to the familiar 

“normal-truncated normal” and “normal-exponential” stochastic frontier models. In either case the 

distribution of inefficiency conditional on the composed error (for each firm) is truncated normal, 

and the traditional predictor of firm-level inefficiency is the mean of this distribution evaluated at 

the regression residual (in place of the composed error) for each firm. See Jondrow, Lovell, Materov 

and Schmidt (1982) for the cross-sectional case and Battese and Coelli (1988) for the panel data 

case. The normal-truncated normal and normal-exponential models have been widely applied, and 

the conditional mean of inefficiency (evaluated at the residual) for each firm is often reported as 

the standard inefficiency predictor.1 

This paper dispenses with the normality assumption of the two-sided error in favor of a Laplace 

error. There are several reasons why the change may be justified. First, we prove that in the absence 

of inefficiency the Laplace model reduces to the Least Absolute Deviations (LAD) estimator. It is 

well-known that the LAD estimator is less sensitive to outliers than OLS, so if outliers are an issue, 

the Laplace specification may be the preferred choice for empiricists, particularly when inefficiency 

in the population is close to zero.2 Consequently, for populations with little to no inefficiency, the 

Maximum Likelihood Estimator (MLE) of the production function under Laplace errors will be 

close to the conditional median function. Second, the true data generation process may possess 

Laplace errors. Third, comparing alternative specifications of the stochastic frontier model sheds 

1In our discussion of the conditional inefficiency distribution we refer to the conditioning arguments as both the 
“regression residual” and the “composed error”. These are synonymous in the sense that in stochastic frontier analysis 
it is always assumed (for the purpose of ex post inference on inefficiency) that the estimate of the production function 
equals the true production function. See Horrace and Schmidt (1996) for a discussion of this concept. 

2Outliers have been considered in the data envelopment analysis (DEA) literature. See Wilson (1993) for an 
example and Cazals, Florens and Simar (2002). While we do not explicitly address outliers here, ours is the first 
paper to propose LAD as a solution to outliers in the stochastic frontier literature. 
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light on robustness features of the approach. 

It is interesting to note that nearly all studies that have investigated alternative distributional 

assumptions for the stochastic frontier model have focused on changes to the distribution of inef-

ficiency. For example, Li (1996) studies a uniform distribution, Carree (2002) proposes a binomial 

distribution, Tsionas (2007) a Weibull distribution, Almanidis, Qian and Sickles (2014) a doubly 

truncated normal distribution and Kumbhakar, Parmeter and Tsionas (2013) consider a mixture 

distribution. However, all these models assume the two-sided error to be normally distributed. 

While it seems self-evident that changing the distribution of inefficiency may shed light on differ-

ent patterns of estimated technical efficiency, the fact that conditional efficiency is all that can be 

estimated in the stochastic frontier model suggests that the two-sided error distribution may be 

equally important.3 

In addition to these arguments we prove that the Laplace error model possesses the unique 

feature that the distribution of inefficiency conditional on the composed error is constant for positive 

realizations of the composed error and varies for negative realizations (regardless of the shape of 

the unconditional distribution of inefficiency). Therefore, all firms with positive regression residuals 

receive the same technical inefficiency predicted value. Since large values of the regression residual 

are associated with small values of inefficiency, the Laplace error model allows for the possibility 

that multiple firms may be tied for the highest efficiency score in the sample. (Ties occur with 

probability zero in stochastic frontier models with normally distributed errors.) In this regard, the 

proposed model may be ideally suited for analyzing highly competitive or mature industries where 

there may be many firms on or close to the efficient frontier. This is related to the “mostly stars, 

few dogs” discussion of Almanidis, Qian and Sickles (2014). We discuss this concept more in the 

sequel. 

The constant conditional distribution for positive errors has implications for inference on inef-

ficiency in the Laplace model. Often an empirical goal is to perform inference on these conditional 

distributions across firms. This is the essence of the marginal prediction intervals of Horrace and 

Schmidt (1996) and Kim and Schmidt (2008), the simultaneous intervals of Horrace and Schmidt 

3Nguyen (2010) is the only work we are aware of that considers studying alternative distributions for the two-sided 
error term (Cauchy and Laplace). 
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(2000), the efficiency ranking methods of Horrace (2005) and Flores-Lagunes, Horrace and Schmidt 

(2007), the expected conditional ranks of Horrace, Richards and Wright (2014), the bagging proce-

dure of Simar and Wilson (2009), and the confidence intervals of Wheat, Greene and Street (2013). 

All these papers use a normal stochastic frontier model specification, resulting in conditional dis-

tributions across firms from the family of truncated normals which are identical with probability 

zero. In contrast the Laplace model can produce identical conditional distributions across some 

firms, thereby simplifying any subsequent inference. That is, if firms with positive realizations of 

the regression residual have the same conditional distribution in the sample, then these firms are 

stochastically equivalent, and any testing procedure with a null hypothesis that the distributions 

are the same will never reject the hypothesis. We only need conduct inference on those firms with 

regression residuals less than zero. While we do not tackle inference in the Laplace model here, the 

model itself opens up an entire new line of inquiry for understanding inefficiency uncertainty when 

errors are Laplace. 

Since the canonical stochastic frontier specification is a normal-truncated normal model (i.e., the 

unconditional distribution of inefficiency is truncated normal), a natural specification to consider 

in the case of Laplace errors is the Laplace-truncated Laplace model. Both the truncated normal 

and truncated Laplace distributions are functions of a location parameter (before truncation) de-

fined on the real numbers. In both cases truncation produces a very rich class of distributional 

shapes, based on whether or not the location parameter is positive or negative. However, the 

truncated Laplace possesses the interesting feature that when the location parameter is negative, 

the resulting distribution is exponential and is no longer a function of the location parameter, so 

the Laplace-truncated Laplace model nests the Laplace-exponential model.4 This has implications 

for maximum likelihood estimation of the Laplace-truncated Laplace model: numerical estimation 

of the location parameter can be restricted to the non-negative real numbers, potentially mak-

ing numerical searches simpler (faster). Indeed, while we provide the distributional theory for a 

Laplace-Truncated Laplace model, we focus the discussion of estimation on the Laplace-exponential 

case. 
4This is in contrast to the truncated normal distribution, which is only independent of the location parameter in 

the half normal case. Nguyen (2010) was the first to consider the Laplace-exponential version of this model. 
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The constant conditional mean/median feature of the proposed model also has implications for 

the empirical practice of identifying “super-efficient firms” in empirical research. Super-efficient 

firms are typically determined based on estimated production frontiers that display residuals with 

positive skewness (Green and Mayes, 1991) or are simply taken as the firms with the highest values of 

estimated technical efficiency (see Timmer, 1971). The proposed stochastic frontier model provides 

a theoretical justification for identification of super-efficient or equally efficient firms that does not 

hinge on the skewness of the residuals or subjective selection of the highest ranked firms. In any 

given sample from the Laplace model, one would focus attention on only those firms with negative 

residuals. We show how this can be done in our brief application to US airlines data. When a Cobb-

Douglas cost function is estimated for the pooled cross-section, the least-squares residuals possess 

the wrong skew, and the normal-exponential estimate of the inefficiency distribution variance is 

zero. The Laplace-truncated Laplace model produces a non-zero variance estimate, and constant 

conditional means for about 30% of the observations. The distribution of the conditional mean is 

discussed with and without these “super-efficient” observations trimmed from the data. 

The assumption of a Laplace distribution for the two-sided error term also has implications 

for deconvolution of the composed error in the cross-sectional case. Horrace and Parmeter (2011) 

develop deconvolution techniques for the stochastic frontier model for cross-sectional data that 

allow for estimation of the unconditional distribution of inefficiency, given that the distribution of 

the two-sided error is normally distributed. They find that consistent estimation of the inefficiency 

distribution has a slow, ln n, convergence rate. It was shown by Fan (1992) that if one of the error 

components is normally distributed, then ln n is the best possible convergence rate for consistent 

estimation of the distribution of the other component. However, if the distribution is Laplace, 

then estimation of the distribution will have faster polynomial convergence rates. Insofar as the 

stochastic frontier model is a deconvolution exercise, a Laplace assumption for the two-sided error 

component may have advantages over the typical normality assumption.5 These advantages are 

(indirectly) explored in this paper using simulation techniques. We show that in the fully-parametric 

model the estimation losses associated with a normality assumption on the two-sided component, 

5See Meister (2004) for a technical description of the loss associated with assuming normality in deconvolution 
settings when the true density is Laplace. 
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when it is actually Laplace, are greater than those associated with a Laplace assumption, when it 

is actually normally distributed. 

Unlike the normal model, identification in the Laplace model does not appear to hinge on 

negative skewness of the LAD or OLS residuals. Both the normal and Laplace specifications imply 

that the skew of the composed error is negative, and Waldman (1982) shows in the case of the 

normal-half normal model that when the skew of the OLS residuals is positive (i.e., their skew has 

the wrong sign), the maximum likelihood estimate of the variance of inefficiency is zero, there is no 

inefficiency in the sample, and MLE reduces to OLS.6 There are two ways in which our proposed 

model does not suffer from the wrong skew. First, pathologically, given that we dispense with 

normality, wrong skewness of the OLS residuals has no implications for the Laplace model because 

LAD (not OLS) is the limiting estimator (as the variance of the inefficiency error component 

goes to zero). Second, even though a Waldman (1982) type result holds (namely that LAD is a 

stationary point for our likelihood function), the Hessian is naturally indeterminate due to the 

non-differentiable point in the likelihood function, so that the stationary point is not stable (nor 

is it unique in the sense of minimizing the absolute deviations). This is borne out in simulations 

where no apparent connection between the skewness of the LAD residuals and the stationary point 

exists and where instability of the results was sometimes encountered. 

In what follows we present several propositions related to the Laplace stochastic frontier model 

and derive the conditional mean and median of inefficiency, based on a truncated Laplace inefficiency 

distribution. This is followed by a detailed set of simulations which examine the model under 

misspecification of the error term and under the ’wrong skew’ condition; comparisons are made to 

the normal stochastic frontier model. An empirical exercise contrasts insights on inefficiency when 

compared to the normal-exponential setup. Conclusions offer avenues for further research. 

6When this occurs in practice there are several solutions prescribed. Greene (1995) discusses several remedies, 
while Simar and Wilson (2009) discuss a ’bagging’ approach to inference. 
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2 The Laplace Stochastic Frontier Model 

We consider the parametric stochastic frontier model for a cross-section of firms: 

yi = xiβ + vi − ui, i = 1, . . . , n (1) 

where yi is productive output for firm i, xi is a k vector of production inputs, and β is an unknown 

parameter vector. The vi ∈ R are random variables representing shocks to the frontier. Let vi have 

iid symmetric Laplace distribution with scale parameter γ. That is, the probability density of v is, 

1 −|v|/γfv(v) = e . (2)
2γ 

The distribution of v is absolutely continuous with respect to the Lebesgue measure and possesses 

a single non-differentiable point at v = 0. The ui ∈ R+ are iid random variables representing 

productive inefficiency with absolutely continuous density function fu(u). The error components 

are v and u, and the composed error is defined as ε = v − u. Then we have the following result. 

Lemma 1 The conditional distribution fu(u|ε) is constant in ε for non-negative values of ε. 

Proof. Since the error components are independent, fuv(u, v) = fu(u)fv(v), and 

1 |ε+u|
γfuε(u, ε) = fu(u)fv(ε + u) = fu(u) e − 

. 
2γ 

When ε ≥ 0, 
1 − ε+u 

fuε(u, ε) = fu(u) e γ ,
2γ 

so that, 

∞ ∞Z Z 
1 − ε − u 1 − ε 

fε(ε) = fuε(u, ε)du = e γ fu(u)e γ du = e γ A(1/γ) for ε ≥ 0,
2γ 2γ 

0 0 

where A(1/γ) is the Laplace transform of the density of inefficiency. Then, � �−1fuε(u, ε) 1 − ε+u 1 − ε − u 

fu(u|ε) = = fu(u) e γ e γ A(1/γ) = fu(u)e γ A(1/γ)−1 for ε ≥ 0. 
fε(ε) 2γ 2γ 
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When ε < 0, the conditional distribution varies in ε. The constant conditional distribution is 

related to (but not precisely due to) the memorylessness property of the exponential distribution, 

in which conditioning arguments in exponential processes are uninformative. In the context of 

the present model, this property effectively partitions the observations into those that are strongly 

informative (ε < 0) and those that are weakly informative (ε ≥ 0) . When ε < 0, inefficiency (u) 

dominates the noise term (v) in the composed error, and fu(u|ε) is well-informed (varies across 

ε). When ε ≥ 0, noise dominates, and fu(u|ε) is less informed, in which case, the distribution 

is constant. Furthermore, ε ≥ 0 implies v ≥ 0, so draws of v behave as if they are exponential 

(half-Laplace), so the near-memoryless feature of the conditioning argument is revealed. This has 

implications for estimating technical efficiency as we shall see. 

Maximum likelihood estimation (MLE) of the frontier model proceeds from the distribution 

fε(ε), which is absolutely continuous because it is the convolution of absolutely continuous distri-

butions. A common question in the stochastic frontier literature is what happens to the likelihood 

function and MLE as the variance of u vanishes or V (u) → 0? Then we have the following result. 

Lemma 2 If the characteristic function of u converges pointwise to 1 as V (u) → 0, then the 

distribution of u converges uniformly to that of degenerate random variable at 0, and the distribution 

of ε converges uniformly to a Laplace distribution with scale parameter γ, so the MLE of the 

stochastic frontier model is the LAD estimator. 

The proof follows immediately from the characteristic function continuity theorem and the 

fact that the characteristic function of ε is the product of the characteristic functions of v and u. 

That is, if ϕu(t) is the characteristic function of u, and limV (u)→0 ϕu = 1, then limV (u)→0 ϕε is the 

characteristic function of a zero-mean Laplace random variable. Therefore, the likelihood converges 

uniformly to the Laplace likelihood and in the limit the MLE is the LAD estimator. This result 

can be reformulated for the case where the distribution of u is degenerate at any finite point in R, 

in which case the limiting MLE is the LAD estimator displaced by a constant. The result holds 

more generally for any continuous fv, so that fε → fv uniformly, and in the limit MLE is based on 

fv (perhaps displaced by a constant). In practice all the difficulty is in understanding the limiting 
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behavior of the distribution of u and determining whether or not the limiting MLE is a stable 

stationary point in the parameter space of the likelihood.7 

Obviously, the aforementioned lemmas hold for any continuous inefficiency distribution: trun-

cated normal, double truncated normal, exponential, etc.. We now introduce a truncated Laplace 

specification for inefficiency. Let ui have an iid truncated (at zero) Laplace distribution with 

location parameter µ ∈ R and scale parameter θ > 0. That is: 

c(µ) −|u−µ|/θfu(u) = e , u ≥ 0, (3)
2θ 

with � −µ/θ1 − 0.5e , µ ≥ 0 
c(µ)−1 = µ/θ . 

0.5e , µ < 0 

The distribution of u is absolutely continuous and possesses a single non-differentiable point at 

u = µ. Allowing for heterogeneity across i in the inefficiency distributions of ui is an interesting 

area of investigation, but it is not considered here. 

Notice that when µ ≤ 0 the truncated Laplace distribution reduces to an exponential distribu-

tion: 

fu(u, µ ≤ 0) = θ−1 e −u/θ, for u ≥ 0, (4) 

so that the Laplace-truncated Laplace model nests the Laplace-exponential model. In particular, 

when µ ≤ 0, the distribution is no longer a function of µ. This has implications for maximum 

likelihood estimation of the Laplace-truncated Laplace model, as we shall see. The result that 

the truncated Laplace distribution reduces to the exponential distribution when the mean of the 

Laplace (before truncation) is non-positive can be generalized as follows: 

Lemma 3 Any density function that is defined as a multiple of an exponential density to the right 

of zero will possess an exponential density when truncated to the left of zero. 

Proof. Since the density function before truncation must satisfy non-negativity and have cumula-

tions less than or equal to unity if suffices to restrict it to the class of density functions fu ∗ (z) = ae−bz 

7This is the essence of the Waldman (1982) results but with v normal and u half normal. 
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∗for constants a > 0, b > 0, and z ≥ 0 for some random variable u ∈ R. Then it is easy to show 

that after truncation to the left 

fu ∗ (y)
fu(y) = R∞ = be−by, 

∗ (z)dz0 fu 

for u ≥ 0, which is the exponential density. 

Therefore, the Laplace distribution with non-positive mean µ and scale parameter θ is a member 

of the class of distributions that satisfy the requirements of the lemma. In particular to the right 

of zero, the Laplace distribution satisfies the lemma with a = 0.5/θ and b = 1/θ. Hence, after 

truncation we have an exponential distribution θ−1e−u/θ when µ ≤ 0. 

Moments for the truncated Laplace distribution of u when µ ≤ 0 are standard exponential 

2 3results: E(u, µ ≤ 0) = θ, E(u , µ ≤ 0) = 2θ2 , E(u , µ ≤ 0) = 6θ3 . Moment results when µ > 0 are 

non-standard: h i 
−µ/θE(u, µ > 0) =c(µ) µ + 0.5e > 0, h � �i 

2 2 −µ/θE(u , µ > 0) =c(µ) µ + θ2 2 − e > 0, h i 
E(u 3, µ > 0) =c(µ) µ 3 + 6µθ + 3θ3 e −µ/θ > 0, 

so the inefficiency distribution exhibits positive skewness (E(u3) > 0), not unlike the traditional 

truncated normal distribution. For completeness the characteristic function of the truncated 

Laplace distribution is given in the following lemma: 

Lemma 4 If random variable u has the truncated Laplace distribution given in equation 3, then 
√ 

its characteristic function is for ι = −1: ( h i 
ιtµ −µ/θe ec(µ) − µ ≥ 0

1+t2θ2 2(1+ιtθ)ϕu(t) = . 
1 µ < 01−ιtθ 

ιtu].The proof follows easily from the standard formula ϕu(t) = E[e When µ ≥ 0, the first 

bracketed term corresponds to the usual characteristic function for a symmetric Laplace random 

variable, while the second term controls for the truncation (the level of asymmetry). When µ 

is large (relative to θ) and positive, the bracketed second term is small (asymmetry is low), and 

the first term dominates (symmetry is high). As µ moves towards 0, the distribution becomes 
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more asymmetric and the second term dominates until µ = 0 at which point c(µ) = 2, and the 

characteristic function becomes that of an exponential distribution. For µ < 0, the characteristic 

function is exponential. As θ → 0 for µ ≥ 0, the characteristic function of u is that of a degenerate 

random variable at µ. 

Figure 1 plots several variants of the truncated Laplace density and shows that with µ ≤ 0 

the distribution is exponential. We consider the µ ≤ 0 case below and show that the distribution 

of inefficiency conditional on the composed error is also exponential. In the normal-exponential 

stochastic frontier this conditional distribution is truncated-normal. Therefore, when the uncon-

ditional distribution of inefficiency is exponential, the conditional distribution of inefficiency is a 

truncated version of the two-sided error. It would be interesting to see if this result is generalizable. 

Figure 1: Density of Truncated at 0 Laplace for various combinations of θ and µ. 
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2.1 The Laplace-Exponential Model: µ ≤ 0 

To fix ideas we consider the case where µ < 0 , so that the distribution of inefficiency is exponential. 

This case is also important if one is interested in making estimation performance comparisons to 

the normal-exponential model, as we do in the sequel. To simplify notation, define constants 

λ+ = γθ/(γ + θ) and λ− = γθ/(γ − θ). Then we have the following results on the density of the 

composed error: 

fε(ε, µ < 0) = 

⎧⎪⎨ ⎪⎩ 
1 −ε/γλ+e� ε ≥ 02γθ 
1 

, � 
ε/θ − λ−eε/γ(λ+ + λ−)e , ε < 0, 6θ = γ (5)2γθ 

1 ε/γ(λ+ − ε) e , ε < 0, θ = γ. 2γθ 

The case where γ = θ is provided for completeness given that λ− does not exist in this instance. 

= θ case can be easily derived by application of l’Hospital’s rule to the γ 6= θ case.However, the γ 

The point γ = θ is a (bounded) continuity point in the space of γ and θ in the density function. The 

first part of (5) (ε ≥ 0) corresponds to the case where v ≥ u ≥ 0. Here, fε(ε, µ < 0) is a rescaled 

exponential distribution with parameter γ, implying that the Laplace portion of the convolution 

dominates the exponential portion. Alternatively, when ε < 0, the situation is more complicated, 

because it is not clear whether v or u dominates. 

When µ < 0 and ε ≥ 0 the conditional distribution of inefficiency is exponential and per Lemma 

1, is not a function of ε, 

−u/λ+fu(u|ε, µ < 0) = λ−1 e for ε ≥ 0.+ 

This result implies that when v is relatively large and u is small, implying ε is positive, there 

will be numerous firms that have the smallest conditional mean inefficiency. It is important to 

emphasize that this distribution is NOT fu(u|ε ≥ 0, µ < 0), which is obviously not a function of 

8ε. It is fu(u|ε) evaluated at any ε ≥ 0. When ε is negative we have that the conditional mean of 

inefficiency depends on ε: 

E [u|ε, µ < 0] =

(
λ+ ε ≥ 0 
ε/γ λ2 ε/θ[ε(λ−−λ+)−λ2e −+e −+λ2 ] (6)

+ , ε < 0,2γθfε(ε,µ<0) 

8In fact, fu(u|ε < 0, µ < 0) is not a function of ε either. 
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and the conditional median, m, is: 

ε ≥ 0 
m[u|ε, µ < 0] = 

⎧⎨ ⎩ 
λ+ ln(2), 
−λ− ln 

� � 
1 − (γ − θ)fε(ε, µ < 0)e

ε/γ−λ+ ln (γ + θ)fε(ε, µ < 0)e
� −ε/γ , ε < 0, 
, ε < 0, 

m[u|ε, µ < 0] < −ε 
m[u|ε, µ < 0] ≥ −ε. 

(7)� 
where fε(ε, µ < 0) corresponds to the density of ε in equation (5).9 To make equation 7 operational, 

use the first part of the equation (λ+ ln(2)) for any ε ≥ 0. For any ε < 0 calculate the second part of 

the equation and check if the condition m[u|ε, µ < 0] < −ε is satisfied. If so, the median calculation 

for that realization of ε < 0 is complete. If not, then it must be true that m[u|ε, µ < 0] ≥ −ε, 

and the third part of the equation is used to calculate the condition median. The second part of 

the equation is based on a left-tail probability of the conditional density, and the third part of the 

equation is based on a right-tail probability. 

The conditional median function, m[u|ε], may be particularly relevant to the Laplace stochastic 

frontier model, since the limiting case (as θ → 0) is the Laplace regression which yields the LAD 

estimator, the estimator of the conditional median of yi. 10 We do not formally prove that λ+ and 

λ+ ln(2) are minima (in ε) for the conditional mean and median function (respectively), but it is 

certainly borne out in simulations (proving this would be equivalent to showing that the conditional 

mean/median is monotonic in ε, a well-known fact in the normal-truncated normal model). The 

constant conditional mean/median for ε ≥ 0 implies that the proposed model has the potential for 

ties for the least inefficient firms in the sample. This is a meaningful result, for if we believe that 

an industry tends to have many highly efficient firms, then the Laplace-exponential model may be 

more appropriate that the normal-exponential model, which produces conditional mean/median 

ties with probability zero. If we substitute ε = 0 into the conditional mean and median formulae 

for the ε < 0 cases (above), we get the constant conditional mean and median results, so ε = 0 is a 

continuity point in the conditional mean/median function. We now consider the Laplace-truncated 

Laplace model. 

9See Appendix A for the γ = θ case, which we exclude here and throughout the rest of the paper. 
10For that matter, in any parametric stochastic frontier model, the conditional median may be more informative 

than the conditional mean given that the conditional distribution of inefficiency is skewed. 
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2.2 The Laplace-Truncated Laplace model: µ ≥ 0 

Consider the case where µ ≥ 0 so that the distribution of inefficiency is no longer exponential. 

Then we have the following result on the density of the composed error: 

fε(ε, µ ≥ 0) =

( �� c(µ) −(µ+ε)/γ − λ−e−µ/θ −ε/γe ε ≥ 0,(λ+ + λ−) e
−|µ+ε|/γ − λ+e

−µ/θ −|µ+ε|/θ(λ+ + λ−) e eε/γ + (λ+ − λ−) e , ε < 0 

,4θγ 
c(µ) � � 
4θγ 

When µ = 0, the density above reduces to that in equation (5) where µ < 0, so µ = 0 is a continuity 

point in the distribution of the composed error (as is the γ = θ case). Therefore, the equation above 

holds generally with the following parameterization of µ: � 
µ, µ ≥ 0 

µ∗ = 
0, µ < 0. 

Then, a general formula for the distribution of the composed error is: 

(λ+ + λ−) e
( �� c(µ∗) −(µ∗+ε)/γ − λ−e−µ∗/θ −ε/γe ε ≥ 0,,4θγ � �fε(ε) = (8)c(µ∗) −|µ∗+ε|/γ − λ+e

−µ∗/θ −|µ∗+ε|/θ(λ+ + λ−) e eε/γ + (λ+ − λ−) e , ε < 0.4θγ 

Again, when ε ≥ 0 the conditional distribution of u is not a function of ε: 

|u−µ∗|c(µ∗) − − u 

fu(u|ε) = e θ γ , ε ≥ 0 
γθfε(0) 

in general. When µ∗ = 0 (corresponding to any µ < 0) and ε ≥ 0, the conditional distribution 

−u/λ+above reduces to the exponential: fu(u|ε, µ∗ = 0) = λ−1 e , ε ≥ 0.+ 

The conditional mean function implied by equation (8) is: 

E [u|ε] = 

⎧ ⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩ 

�� c(µ∗) 
4θγfε(0) 

� −µ∗/γ −µ∗/θ+ λ2 
−eµ∗ (λ+ + λ−) + λ2 − λ2 

+ −�� , ε ≥ 0,e� c(µ∗) −(µ∗+ε)/γµ∗ (λ+ + λ−) + λ2 
+ − λ2 e− , ε < 0, µ∗ ≥ −ε,−(µ∗+ε)/θ −µ∗/θ ε/γ+ λ2 

+e e
�4θγfε(ε) 

− − λ2ε (λ− − λ+) + λ2 �� + 

� 
(9)+ e � c(µ∗) µ∗ (λ+ + λ−) − λ2 

+ 
(µ∗+ε)/γ+ λ2 e−�4θγfε(ε) 

(µ∗+ε)/θ 
− + λ2ε (λ− − λ+) − λ2 e + λ2 

+ +e
, ε < 0, µ∗ < −ε. −µ∗/θ ε/γe

� 
+ 

Hence, the conditional mean function is constant when ε ≥ 0 for all values of the distributional 

parameters µ∗, γ and θ. (See Appendix A for the γ = θ case.) 

When µ ≥ 0 and ε ≥ 0 the conditional median is: 

⎧⎨ ⎩ λ− ln 
ih 

fε(0) µ∗/θ(γ − θ)e , ε ≥ 0, m[u|ε] < µ∗,1 + 2 c(µ∗)h im[u|ε] = (10)
fε(0) −µ∗/θ−λ+ ln 2 (γ + θ)e , ε ≥ 0, m[u|ε] ≥ µ∗ c(µ∗) 

13 



Notice in the last case, when µ∗ = 0, we get the result m[u|ε] = λ+ ln(2), which is the exponential 

result when ε ≥ 0.11 The m[u|ε] < µ∗ result above is based on the left-tail probability and the 

m[u|ε] ≥ µ∗ is based on the right-tail probability of the conditional distribution of u (See Appendix 

A for the γ = θ case). In practice, calculate the first part of the formula for any ε ≥ 0. If the 

condition m[u|ε] < µ∗ is satisfied, then the calculation is complete. Otherwise, use the second part 

of the equation to calculate the conditional median for that realization of ε ≥ 0. 

When µ ≥ 0 and ε < 0 the conditional median is: 

m [u|ε] =

⎧ h i
 ⎪⎪ f (ε)⎪ λ  2 ε

+ ln 1 + (γ + θ)eµ∗/θe−ε/γ , ε < 0,m[u|ε] < min(µ −ε),⎪⎪ c(µ∗) ∗, 
ε)⎪⎪⎪ f (  λ  ln 2

ε (γ e⎪ − { − θ)eµ∗/θ ε/γ⎨ c(µ∗) 	 , ε < 0, −ε < m[u|ε] < µ∗,−e−ε/λ− (λ 2
+/λ

ε/γ 
 − − 1) + e λ+/λ−⎪⎪ fε(ε) (11) ⎪ −λ {− )e−µ∗ e−⎪ − ln 2 (γ − θ /θ ε/γ⎪ c(µ∗) 	 , ε < 0, −ε ≥ m[u|ε] ≥ µ , ⎪⎪ −2µ/γ ∗⎪ +e−µ/λh − (λ+/λ− + 1) − e i λ+/λ− ⎩ ⎪ f (ε) −λ+ ln 2 ε (γ + θ)e−µ∗/θeε/γ , ε < 0,m[u|ε] ≥ max(µ , −ε). c(µ∗) ∗

hree results are based on left tail probabilities and the last is based on the right tail 

 of the conditional distribution of u (See Appendix A for the γ = θ cases). In practice, 

The first t

probability

calculate each part of equation (11) in order, and stop when the relevant condition [e.g., m[u|ε] < 

min(µ∗, −ε)] is satisfied. 

2.3 Estimation 

The model in (1) may be estimated via corrected ordinary least squares (COLS). That is estimate 

the model using ordinary least squares with intercept (x1i = 1) to get βbj , j = 2, ..., k, which are 

consistent for βj , j = 2, ..., k as n → ∞. The intercept βb1 is consistent for β1 − E(u), but it can 

be corrected based on the moments of the OLS residuals. To do so, we only need the parametric 

assumption on the distribution of u and moments conditions on v. The parameters γ, θ and µ∗ may 

then be consistently estimated from moments of the residuals using the parametric assumption on 

12the distribution of v. 

Since the distribution of the convolution v − u is absolutely continuous (and bounded), the fully 

parametric model can also be consistently estimated via the likelihood principle using equation 
11There are no analogous results for µ∗ = 0 in the first case, because it would violate the condition m[u|ε] < µ∗. 
12COLS is a conditional mean interpretation of the model in (1). Alternatively, one could estimate LAD, in which 

case the estimates are the conditional median function. 
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(8). However for simplicity and for comparative purposes, we focus our discussion on the Laplace-

exponential model where µ∗ = 0, so the log-likelihood is: 

X X 
ln L(εi|γ, θ, β) = const. − [ln(γ + θ) + εi/γ] + ln[(γ − θ)(e εi/γ − e εi/θ) + (γ + θ)e εi/θ]. 

i:εi≥0 i:εi<0 

The score and Hessian are derived in Appendix B. When maximizing the function, we recom-

mended using a variety of alternative starting values, since for small values of θ and γ the likelihood 

function can be fairly flat (although the parameters remain identified). For the simulation and ap-

plication that follow we use a variety of gradient and non-gradient optimization methods (including 

Nelder-Mead and Particle Swarm) and find similar performance across all methods. Lastly, in some 

simulations a maximum is found where the Hessian is not invertible, leading to problems construct-

ing estimates of the variance-covariance matrix of the estimated parameters. 

It should be noted that the conditional mean predictor of technical inefficiency is E [u|ε] with 

ˆthe estimation residual, ε̂ = y−xβ, substituted for the composed error. Given that E[u|ε̂] is a mean 

and u is bound from below by 0, the conditional mean can never equal zero (the same arguments 

apply to the conditional median function, m[u|ε̂]). Therefore, the Laplace-truncated Laplace model 

will never predict that firms are fully efficient. However, this can be said of all stochastic frontier 

models which assume an absolutely continuous distribution for inefficiency. For a counter-example 

of this see the zero-inefficiency models of Kumbhakar, Parmeter and Tsionas (2013) and Rho and 

Schmidt (2013). 

2.4 A LAD Stationary Point 

Waldman’s (1982) classic result of a stable stationary point at the OLS estimator for the normal-

half normal likelihood extends to the Laplace model, albeit at the LAD estimator. LAD poses 

well-known analytic difficulties related to the non-differentiability of the likelihood.13 

� � 
ˆLemma 5 The point βLAD, ̂ is a stationary point for the Laplace-exponential likelihood, γ, 0 

ˆwhere βLAD is the LAD estimator of β, and γ̂ is the maximum likelihood estimator of the scale 

parameter for the Laplace distribution. 

13See Koenker (2005) for a discussion of non-uniqueness and instability of the LAD estimator. 
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Taking the limit as θ → 0 of the score function given in Appendix B yields: ⎤⎡ ⎤⎡ γ−1 
n

i=1 

P 
sign(εi)xi∂ ln L 

∂β 
∂ ln L 
∂γ 

⎥⎦ = 

⎢⎢⎢⎢⎣ 
⎥⎥⎥⎥⎦ , (12)

⎢⎣ n

i=1 

Plim S(γ, θ, β) = lim 
θ→0 −nγ−1 − γ−2 |εi|θ→0 ∂ ln L 

∂θ 
γ−1(n2 − n1) 

where n1 is the cardinality of the set of positive residuals, and n2 is the cardinality of the set of 

negative residuals. Notice that the first component of S(γ, θ, β) is precisely the LAD condition for 

the vector of contrasts. The second component is the MLE of the scale parameter of the Laplace 
n

i=1 

for even n. 

P 
|ε̂i|), while the third component is zero, given that β̂LAD ensures n1 = n2 

−1distribution (γ̂ = n

As a curiosity, the Hessian matrix as θ → 0 evaluated at the stationary point produces, ⎤⎡ 
0k×k 0k×1 0k×1 

H(γ, θ, β) = nγ−2 ⎣ 00 k×1 −1 0 ⎦ , (13)lim 
θ→0 

00 k×1 0 1 

which is clearly indefinite, as expected. 

The indefiniteness of the Hessian at the stationary point induces instability of the likelihood 

function. This is in contrast to the stable Waldman (1982) result. In simulations, when the 

sample size is small, we find that occasionally the LAD stationary point is a local maximizer of the 

likelihood function. However, as the sample size increases, LAD is no longer the local maximizer. 

This result is interesting in light of Simar and Wilson (2009), who show that even for sample sizes 

as large as 1,000,000, the normal-half normal model can produce convoluted errors with the wrong 

skew, and a local maximum at OLS. In contrast, more observations from the Laplace-exponential 

model assists in moving the solution away from the stationary point. We surmise that this is due 

to the fact that the indefiniteness of the Hessian in no way depends on skewness. 

We conduct two sets of experiments. In the first set of experiments, we examine the performance 

of the model in equation (1) under misspecification of the distribution of v. In particular, we 

generate data from a normal-exponential model, but fit a Laplace-exponential model to the data. 
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We then generate data from a Laplace-exponential model, but fit a normal-exponential model. 

We find for a variety of signal-to-noise ratios, V (u)/V (v), and sample sizes, n, that Laplace-

exponential estimation very often (but not always) outperforms normal-exponential estimation, 

when v is misspecified. 

In a second set of experiments, we let V (u)/V (v) = 0.2, so that both models produce incorrectly 

skewed residuals with high probability and repeatedly calculate maximum likelihood estimates of 

the variance of inefficiency from simulated draws. We find that the Waldman (1982) result holds 

for the normal-exponential model. That is, when the OLS residuals are positively skewed, the 

normal-exponential MLE of the variance of inefficiency is zero. This may imply that the normal 

exponential model possesses a stationary point at θ = 0. However, this does not appear to be the 

case for the Laplace-exponential model, which produces non-zero MLE estimates of the variance, 

when the skew of the LAD residuals is positive. 

3.1 Misspecification Experiments 

We consider sample sizes of n = 100, 200, 400 and 800, and signal-to-noise ratios of V (u)/V (v) = 

10−1, 10−3/4, 10−1/2, 10−1/4, 100, 101/4, 101/2, 103/4 and 101 for V (v) + V (u) = 1. As is common 

practice (see, Olson, Schmidt and Waldman, 1980), we ignore regressors in equation (1), so our 

data generation and estimation is for the model y = v − u. For the normal-exponential model, 

v ∼ N(0, σ2) and the signal to noise ratio is θ/σ. For the Laplace-exponential model, the variance of �√ � 
v is 2γ2, so the signal to noise ratio is θ/ 2γ . Maximum likelihood estimation of the misspecified 

model is done by differential evolution (Storn and Price, 1997), which is a genetic based algorithm.14 

Mean squared error of the variance parameters θ and γ (or σ) is estimated using 1,000 simulations. 

Monte Carlo results are in Table 1. The first column of the table contains the various signal-to-

noise ratios. Reading across the table for each signal-to-noise ratio, the MSE for either θ, γ or σ are 

reported for various sample sizes and parametric assumptions. The first set of columns (Normal 

- Laplace Estimates) contains the MSE for θ and γ for experiments where data are generated 

from a normal-exponential (NE) model, but a Laplace-exponential (LE) model is estimated. For 

14Differential evolution was performed using the DEoptim package in R with default tolerance of 1e-8, a local-to-best 
evolution strategy, cross-over probability of 0.5, a step size of 0.8 and 500 iterations. 
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Table 1: Mean Squared Error Results For Misspecified Models. 
n n = 100 n = 200 n = 400 n = 800 n = 100 n = 200 n = 400 n = 800 
V (u)/V (v) Normal Data Laplace Estimates Laplace Data Normal Estimates 
10−1 θ 0.0127 0.0096 0.0063 0.0044 

γ 0.0535 0.0495 0.0473 0.0460 
θ 0.0119 0.0066 0.0038 0.0020 
σ 0.0831 0.0812 0.0836 0.0863 

10−3/4 θ 0.0143 0.0088 0.0053 0.0040 
γ 0.0570 0.0514 0.0498 0.0496 

θ 0.0146 0.0089 0.0050 0.0031 
σ 0.0814 0.0758 0.0775 0.0781 

10−1/2 θ 0.0113 0.0058 0.0040 0.0028 
γ 0.0568 0.0534 0.0522 0.0508 

θ 0.0141 0.0077 0.0040 0.0024 
σ 0.0668 0.0653 0.0679 0.0667 

10−1/4 θ 0.0089 0.0045 0.0022 0.0012 
γ 0.0500 0.0463 0.0451 0.0445 

θ 0.0106 0.0056 0.0029 0.0014 
σ 0.0604 0.0599 0.0548 0.0557 

100 θ 0.0090 0.0049 0.0023 0.0012 
γ 0.0335 0.0310 0.0303 0.0295 

θ 0.0107 0.0046 0.0024 0.0012 
σ 0.0502 0.0455 0.0430 0.0419 

101/4 θ 0.0100 0.0048 0.0024 0.0012 
γ 0.0184 0.0170 0.0160 0.0156 

θ 0.0102 0.0053 0.0024 0.0012 
σ 0.0287 0.0254 0.0234 0.0229 

101/2 θ 0.0099 0.0049 0.0024 0.0012 
γ 0.0086 0.0077 0.0069 0.0065 

θ 0.0096 0.0054 0.0026 0.0012 
σ 0.0126 0.0114 0.0098 0.0099 

103/4 θ 0.0096 0.0049 0.0026 0.0013 
γ 0.0038 0.0030 0.0026 0.0024 

θ 0.0093 0.0049 0.0024 0.0012 
σ 0.0053 0.0041 0.0040 0.0036 

101 θ 0.0108 0.0051 0.0025 0.0013 
γ 0.0016 0.0011 0.0010 0.0008 

θ 0.0102 0.0047 0.0026 0.0012 
σ 0.0022 0.0016 0.0013 0.0012 

All results are for 1000 Monte Carlo Simulations. “Normal Data Laplace Estimates” is a normal-
exponential data generation process estimated by a Laplace-exponential model. “Laplace Data Normal 
Estimates” is a Laplace-exponential data generation process estimated by a normal-exponential model. 
For each value of V (u)/V (v), the first row corresponds to the MSE of θ and the second row corresponds 
to either the MSE of γ (when estimating a Laplace-exponential model) or the MSE of σ (when estimating 
a normal-exponential model). 

example, when the signal-to-noise ratio is 10−1 (a relatively noisy experiment), n = 100, and we 

fit a LE model to NE data, we have MSE(θ̂) = 0.0127 (first row) and MSE(γ̂) = 0.0535 (second 

row). As the sample size increases to n = 800 the MSE(θ̂) and MSE(γ̂) decrease to 0.0044 

and 0.0460, respectively. Obviously, when the data are NE and the model is LE, MSE(γ̂) is 

calculated from differences in the maximum likelihood estimates, γ̂, and the true parameter value, 

σ. The second set of columns (Laplace Data - Normal Estimates) contains the MSE for θ and σ 

for experiments where data are LE, but an NE model is fit. For example, when the signal-to-noise 

ratio is 10−1 (a relatively noisy experiment) and n = 100, we have MSE(θ̂) = 0.0119 (first row) 

and MSE(σ̂) = 0.0831(second row). Here, MSE(σ̂) is calculated from differences in the maximum 

likelihood estimates, σ̂, and the true parameter value, γ. 

The results in Table 1 are interesting. First, when we fit an LE model to NE data, the MSEs 
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of the estimated parameters are always decreasing in sample size. However, this is not always the 

case when we fit an NE model to LE data. For example, when the signal-to-noise is 10−1 and the 

data are NE, the MSE(γ̂) for the LE fitted model is always decreasing in sample size: 0.0535, 

0.0495, 0.0473 and 0.0460 for sample sizes, 100, 200, 400, 800, respectively. However, this is not the 

case for LE data and an NE fitted model, where the MSE(σ̂) is increasing from 0.0812 to 0.0836 

to 0.0863 as we move from sample sizes of 200, 400 and 800, respectively. This is not to say that 

estimating a LE model on NE is consistent, but is does seem to produce better estimates (in terms 

of MSE) than the alternative. It should be noted that this “inconsistency problem” only occurs in 

estimating γ as σ̂; the estimates of θ are always decreasing in MSE as the sample size grows. This 

is somewhat reassuring, since we are only misspecifying the distribution of v (parameterized by γ 

or σ). Also, the problem only occurs in the noisiest experiments with signal-to-noise ratios of 10−1 , 

10−3/4, 10−1/2 and 10−1/4 . It occurs only once when the signal-to-noise is 101/4, but the difference 

between MSE(σ̂) of 0.0098 (n = 400) and 0.0099 (n = 800) is probably due to statistical noise. 

Secondly, we see in Table 1 that the MSE’s associated with fitting an LE model to NE data 

are often smaller then when fitting an NE model to LE data. For example, when the signal to 

noise is 10−3/4 and n = 100, we see that MSE(γ̂) = 0.0570 when fitting an LE model to NE 

data, while MSE(σ̂) = 0.0814 when fitting an NE model to LE data. In fact, it is always the case 

that MSE(γ̂) < MSE(σ̂) across all combinations of n and signal-to-noise. When making these 

types of comparisons in estimating θ the results are mixed. For example, in the noisiest experiment 

(V (u)/V (v) = 10−1), MSE(θ̂) is smaller when fitting a NE model to LE data, than when fitting 

an LE model to NE data (compare 0.0119 to 0.0127, 0.0066 to 0.0096, 0.0038 to 0.0063 and 0.0020 

to 0.0044). However, in the V (u)/V (v) = 10−1/3 experiments the opposite occurs (compare 0.0106 

to 0.0089, 0.0056 to 0.0045, 0.0029 to 0.0022 and 0.0014 to 0.0012). Some of these differences may 

be due to statistical noise, but in certain cases they clearly are not. 

In summary, our experiments suggest that fitting an LE model to NE data is always better for 

estimating the variance of (the misspecified component), but fitting an NE model to LE data is 

often better for estimating the variance of inefficiency (21 out of 36 experiments or about 80% of the 

time). Of course estimating both variances accurately is important when estimating the conditional 
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mean predictor of inefficiency. In this regard fitting an LE model to NE data appears to be more 

reliable: of the 72 MSE comparisons across the two panels of Table 1, the MSE associated with 

fitting an LE model to NE data are smaller 51 times or about 70% of the time. This suggest that 

if faced with making a guess at a normal or Laplace distribution for v, Laplace may be the better 

choice from the standpoint of the mean squared error of the variance parameters. 

3.2 Wrong Skew Experiments 

Similar to the previous experiment, we draw data from both the NE and LE models, but with 

V (u)/V (v) = 0.2 and n = 100 and 1000. Maximum likelihood estimates of θ and the skew of the 

OLS and LAD residuals are recorded for each draw. Figures 2 and 3 show this relationship for 

1,000 draws. It is clear from figure 2 that the NE model produces θ̂ = 0 when the skew of the 

OLS residuals in wrong (positive). This suggests that Waldman’s (1982) stationary-point result 

holds for the normal-exponential model as well as for the normal-half normal model. Further, as is 

consistent with the insights of Simar and Wilson (2009), for a signal-to-noise ratio of 0.2, even for 

samples of size 1,000, nearly 40% of random draws from a normal-exponential model generate the 

wrong-skew. 

Figure 3, suggest no relationship between the LAD residuals’ skew and θ̂, which confirms our 

results on the Hessian in section 2.4. Additionally, for n = 1000 nearly all of the estimates of 

θ are non-zero, suggesting that the perceived instability of the likelihood function around the 

stationary point dissipates quickly as the sample size increase. For example, in only 12 of the 1000 

simulations did the Laplace-exponential maximum likelihood estimator produce an estimator that 

was 0. Compare this to the almost 40% of the simulations for the normal-exponential maximum 

likelihood estimator which produced 0 estimates. 

While the lack of a stationary point based on the skewness of the OLS or LAD residuals does 

not solve the “wrong skew” problem per se, it suggests that a Laplace-truncated Laplace frontier 

model (which nests the LE model) may produce non-zero θ̂ when the NE (or normal-truncated 

normal) model does not. In the empirical application that follows, a Laplace-Truncated Laplace 

model does not suffer from the “wrong skew” problem of the normal-exponential model. 
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Figure 2: Skew of OLS Residuals and MLE of Inefficiency Variance, Normal-Exponential. 
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4 Brief Application to US Airlines Data 

To illustrate the utility of the Laplace-truncated Laplace model, we estimate a stochastic cost 

function using the US Airlines data from Greene’s “Econometric Analysis” textbook, Edition 7, 

Table F6.1.15 The dataset are a panel of 90 observations of 6 airlines over 15 years (1970-1984) 

and consist of: Costs (in $1,000), Output (in revenue passenger miles, index number), Price (the 

price of fuel), and Load (load factor, the average capacity utilization of the fleet). We ignore the 

panel structure and estimate OLS, the normal-exponential model, the Laplace-truncated Laplace 

model, and the Laplace exponential model with the pooled cross-section, based on the following 

Cobb-Douglas cost specification: 

ln Costi = α + β1 ln Outputi + β2 ln F ueli + β3Loadi + ui + vi. (14) 

15Data are available on Prof. Greene’s NYU website where he states, “These data are a subset of a larger data 
set provided to the author by Professor Moshe Kim. They were originally constructed by Christensen Associates of 
Madison, Wisconsin.” 
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Figure 3: Skew of LAD Residuals and MLE of Inefficiency Variance, Laplace-Exponential. 
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Other models were fitted (e.g., Trans-log), but only the Cobb-Douglas produced OLS residuals with 

the wrong skew, which is what we desire for the purposes of illustration. 

Estimation results are in Table 2. The coefficients for each cost input are statistically significant 

and are fairly stable across our four models. For example, the coefficients for Output are 0.883, 

0.884, 0.891, and 0.894 for OLS, the normal-exponential model, the Laplace-truncated Laplace 

model, and the Laplace exponential model, respectively.16 The maximum likelihood estimates 

of the distributional parameters are in the last three rows of the table. The normal-exponential 

model produces an estimate of θ̂ = 0.000, implying that the “wrong skew” issue exists in the normal-

exponential model and that zero-inefficiency may be a stationary point in the normal-exponential 

likelihood function. The Laplace-truncated Laplace model produces a significant and non-zero 

estimate of θ̂ = 0.063, indicating that the model does not suffer from the wrong skew issue that 

plagues the normal-exponential. However, the Laplace-truncated Laplace model does not produce 

a significant estimate of the location parameter, µ̂ = 0.893, so we estimate the Laplace-exponential 

16Standard errors are based on numerical calculation of the Hessian at the parameter estimates. 
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Table 2: Airline Costs Functions, 1970-1984, Pooled Cross-Section. 

Ordinary Normal- Laplace- Laplace-
Least Squares Exponential Truncated Laplace Exponential 

Intercept 9.517** 9.537** 8.772** 9.632** 
(0.229) (0.303) (0.750) (0.216) 

ln(Output) 0.883** 0.884** 0.891** 0.894** 
(0.013) (0.013) (0.012) (0.011) 

ln(F uel) 0.454** 0.453** 0.441** 0.439** 
(0.020) (0.020) (0.020) (0.019) 

Load -1.628** -1.655** -1.559** -1.546** 
(0.345) (0.346) (0.342) (0.254 

γ̂ - 0.015** 0.063** 0.086** 
(0.006) (0.027) (0.012) 

θ̂ - 0.000 0.063** 0.043* 
(0.006) (0.026) (0.022) 

µ̂ - - 0.893 -
(0.757) 

** - significant at 5% level, * - significant at 10% level. Sample size is 90. 

(µ = 0) version of the model. 

The (final) Laplace-exponential model, produces significant estimates of γ̂ = 0.086 and θ̂ = 

0.043. Residuals for the Laplace-exponential model were used to calculate the conditional mean 

of inefficiency, E [u|εi], in Equation 6 (with µ∗ = 0 and εi = ε̂i) for each of the 90 observations. 

Twenty-six of the 90 observations had positive residuals, and constant minimal values of the con-

ditional mean equal to 0.0287. The maximal value of the conditional mean is 0.0820, the average 

value is 0.0438 and the median value is 0.0403. The distribution of conditional mean scores is in 

Figure 4. If we trim the 26 “efficient” firms (conditional mean equal to 0.02867), then the remaining 

64 firms have an average conditional mean of 0.0500 and median of 0.0500. 

The Laplace stochastic frontier model performs well under misspecification, produces non-zero 

estimates of the variance of inefficiency when the OLS and the LAD residuals have the wrong skew, 

and the constant conditional mean (when ε ≥ 0) makes the model ideally suited for industries 
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Figure 4: Histogram of conditional inefficiency estimates for the Laplace-Exponential model. 
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with many firms near the efficient frontier. Interestingly, opponents of the stochastic frontier 

model claim that the models are just estimating noise as inefficiency; the proposed model seems 

to accommodate this notion by setting the conditional mean of inefficiency to a constant minimal 
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value when observations of the estimation error are large (ε ≥ 0) and setting this mean to a non-

minimal value when estimation error is small (ε < 0). In other words, the Laplace frontier model 

differentiates between “noisy results” and “less noisy results” in characterizing inefficiency. 

Our simulation suggest that a Laplace error may be preferred to a normal error when the model 

is misspecified. There are other cases in the literature when a Laplace error may be preferred. 

Magnus, Powell and Prüfer (2009) use a Laplace prior (as opposed to a normal prior) because it 

has bounded risk. Meister (2004) shows that in a deconvolution setting, if one assumes that the 

error distribution is normal, when in fact it is Laplace, the loss of the density estimator is infinite, 

whereas in the reverse setting the loss is finite, implying that when one does not have concrete 

knowledge of the error distribution it is better to assume Laplace. It may be interesting to revisit 

inefficiency density deconvolution in the frontier model in the style of Horrace and Parmeter (2011), 

but with Laplace errors. This is currently being considered by the authors. 
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A Derivations for γ = θ 

Even though λ− does not exist when γ = θ, it is a continuity point in line 2 of equation (5). To see � � 
ε/θ ε/θ − eε/γthis rewrite the bracketed term in in the second line of equation (5) as λ+e +λ− e . As � � 

ε/θ − eε/γθ → γ, the term e → 0 faster than λ− →∞. Application of L’Hopital’s rule shows that � � 
ε/θ − eε/γas θ → γ, λ− e → −εeε/γ , and the third line in equation (5) results. For completeness 

we provide results for the case where θ = γ for the most general Laplace-truncated Laplace model 

(equations (8), (9) and (11)): ( 
c(µ∗) −(µ∗+ε)/γ , ε ≥ 0, θ = γ,4γθ (µ∗ + λ+) e

fε(ε) = � � ,c(µ∗) 2λ+e
−|µ∗+ε|/γ − λ+e

−(µ∗−ε)/γ + |µ∗ + ε|e−|µ∗+ε|/γ ε < 0, θ = γ4γθ 

and ⎧ � � c(µ∗) 2 −µ∗/γ⎪⎪ 0.5µ∗ + µ∗λ+ + λ+
2 e ε ≥ 0, γ = θ⎨ 4γθfε(0) �� � � c(µ∗) 2 −(µ∗+ε)/γ −(µ∗−ε)/γE(u|ε) = 0.5(µ∗ − ε2) + λ+(µ∗ − ε) e + λ2

+e µ∗ ≥ −ε, γ = θ .4γθfε(ε) �� � �⎩ c(µ∗) 2 (µ∗+ε)/γ −(µ∗−ε)/γ 
⎪⎪

0.5(ε2 − µ∗) + λ+(µ∗ − ε) e + λ2 e µ∗ < −ε, γ = θ4γθfε(ε) +

The conditional median results are ⎧ 
fε(0) µ∗/θ2γθ e , ε ≥ 0, m[u|ε] < µ∗,c(µ∗) 

⎪⎪⎪⎪⎨ γθfε(ε)e−ε/γ , ε < 0, m[u|ε] < −ε, µ < 0 
m[u|ε] = ⎪ 2γ2 fε(ε) e(µ∗+ε)/γ − λ+(

γ e2ε/γ − 1) − ε, ε < 0, −ε < m[u|ε] < µ∗, 
(15) 

c(µ∗) 2⎪⎪⎪⎩ 2γ2 fε(ε) e−(µ∗+ε)/γ − λ+(
γ e−2µ∗/γ − 1) + µ, ε < 0, −ε ≥ m[u|ε] ≥ µ∗ c(µ∗) 2 

B Score and Hessian of Laplace-Exponential Likelihood Function 

First, to condense on notation we first derive the first and second derivatives of (5), with respect 

to our unknown parameter. First, let ! 
ε/γ − eε/θ ε/θe e

ln A = ln + . (16)
γ − θ γ + θ 

Doing so yields 

ε/θ − (θ + γ)2 ε/γ (γ2∂ ln A 4θγ3e e + γε − θε)Lγ = = � � ,
ε/γ − 2θeε/θ∂γ γ2(γ − θ)(θ + γ) (θ + γ)e� � 

θeε/γ (γ + θ)2 − 2eε/θ∂ ln A −γ2ε + θ3 + θ2ε + γ2θ 
Lθ = = � � ,

2θeε/θ − eε/γ (γ + θ)∂θ θ(θ − γ)(γ + θ) 
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� 

� 

� � � 

� 

� 

� �2 
ε2 ε/γ 2εeε/γ 2εeε/γ 2(eε/γ −eε/θ ) ε/θ εeε/γ ε/γ −eε/θ eε/θe 2e − e∂2 ln A γ4(γ−θ) + 

γ3(γ−θ) + 
γ2(γ−θ)2 + 

(γ−θ)3 + 
(θ+γ)3 −

γ2(γ−θ) (γ−θ)2 − 
(θ+γ)2 

= = −Lγ,γ 
∂γ2 eε/γ −eε/θ 

+ e
ε/θ e +θ+γ 

,
ε/γ −eε/θ ε/θe
γ−θ (θ+γ)2γ−θ 

and 

ε/θ ε/θ 2εeε/θ 2εeε/θ∂2 ln A −ε2e ε2eLθ,θ = = + − + 
∂θ2 θ4(γ − θ) θ4(γ + θ) θ3(γ − θ) θ3(γ + θ) ! 

/ 
e

! 
2εeε/θ 2εeε/θ ε/γ − eε/θ) ε/θ2(e 2e ε/γ − eε/θ ε/θe

+ 
γ − θ γ + θ 

+ + + + 
θ2(γ − θ)2 θ2(γ + θ)2 (γ − θ)3 (γ + θ)3 !2 !2 
εeε/θ εeε/θ ε/γ − eε/θ ε/θ ε/γ − eε/θ ε/θe e e e− − + − / + . 

θ2(γ − θ) θ2(γ + θ) (γ − θ)2 (γ + θ)2 γ − θ γ + θ 

To calculate Lγ,θ, we denote the numerator of Lγ as LN and the denominator as LD 
γ γ 

∂LN ∂LD 

LD γ γ
∂2 ln A − LN 

γ ∂θ γ ∂θ Lγ,θ �2 = = ,
∂γ∂θ LD 

γ 

where �� 
ε/θ(ε − θ) − θ(θ + γ)(−2γ2 ε/γ4γ3 e + γε + θε)e

∂LN
γ 
= γ−2 

∂θ 

and 
∂LD

γ 
= γ−2θ 

∂θ 

Lastly, note that 

� 
(θ γ)+ 3γ3 − γ2(θ + ε) + θ2ε 

� � 
ε/γ − 4θγ3 ε/θe e . 

∂ ln A 
= A−1 ∂A Lβ = 

∂β ∂β 

where 
ε/γ x ε/θ x ε/θ xe − e e∂A γ θ 

= − − θ = Aβ
∂β γ − θ γ + θ 

The score vector of the Laplace-Exponential likelihood function is PP⎡ ⎤ 
γ−1 xi + Lβ,i ⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 
i∈{εi>0}

−n1(γ + θ)−1 + γ−2
PPi∈{εi<0}

εi + Lγ,i S(Θ) = , (17)
i∈{εi<0}Pi∈{εi>0}

−n1(γ + θ)−1 + Lθ,i 
i∈{εi<0} 

where Θ = (γ, θ, β). The Hessian is � �P P P⎡ 
A−1 

i Aβ,β,i − A−1 
i A−1 

i Aβ,γ,i − A−1 
i A−1 

i Aβ,θ,i − A−1 
iAβ,iA

0 
β,i Aβ,iAγ,i Aβ,iAθ,i ⎢⎢⎢⎢⎣ 

i∈{εi<0} 

n1(γ + θ)−2 − 2γ−3
i∈{εi<0} 

n1(γ + θ)−2 
� PP PPi∈{εi<0}

A−1 
i Aβ,γ,i − A−1 

i Lγ,γ,i Lγ,θ,i Aβ,iAγ,i εi + +H(Θ) = . 

⎤� ⎥⎥⎥⎥⎦Pi∈{εi>0} 

+ 
i∈{εi<0}

Lγ,θ,i 
Pi∈{εi<0}

Lγ,γ,i 
�Pi∈{εi<0}

A−1 
i Aβ,θ,i − A−1 

i Aβ,iAθ,i n1(γ + θ)−2 n1(γ + θ)−2 + 
i∈{εi<0} i∈{εi<0} i∈{εi<0} 
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We have also used the notation � �� � εε/θ −2 −2 ε/γ −1 −1Aγ = e (γ − θ) − (γ + θ) − e (γ − θ) + (γ − θ)
γ2 h i h iε εε/θ −1 −1 ε/θ −2 −2 −1Aθ = e (γ − θ) + (γ − θ) − e (γ − θ) + (γ + θ) + (γ + θ) ,

θ2 θ2 � � � � 
−2 ε/γ x ε/θ x −2 ε/θ x −1 ε/γ x ε 

Aβγ = (γ − θ) e − e + (γ + θ) e + (γ − θ) e + 1 
γ θ θ γ2 γ � � h i� �−2 ε/γ x ε/θ x −2 ε/θ x −1 −1 ε/θ x ε 

Aβθ =(γ − θ) e − e + (γ + θ) e + (γ + θ) − (γ − θ) e + 1 
γ θ θ θ2 θ 
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