
Density Deconvolution with 
Laplace Errors and Unknown 
Variance 

Jun Cai, William C. Horrace, and Christopher F. 
Parmeter 

Paper No. 225 
June 2020 (Revised from March 2020) 



Abstract 

We consider density deconvolution with zero-mean Laplace noise in the context of an error component 

regression model. We adapt the minimax deconvolution methods of Meister (2006) to allow 

estimation of the unknown noise variance. We propose a semi-uniformly consistent estimator for an 

ordinary-smooth target density and a modified “variance truncation device" for the unknown noise 

variance. We provide a simulation study and practical guidance for the choice of smoothness 

parameters of the ordinary-smooth target density. We apply restricted versions of our estimator to a 

stochastic frontier model of US banks and to a measurement error model of daily saturated fat intake. 

JEL No.:  C12, C14, C44, D24 

Keywords: Efficiency Estimation, Laplace Distribution, Stochastic Frontier 

Authors: Jun Cai, Department of Economics, Center for Policy Research, Syracuse University, 

jcai106@syr.edu; William C. Horrace, Department of Economics, Center for Policy Research, Syracuse 

University, whorrace@syr.edu; Christopher F. Parmeter, Department of Economics, University of 

Miami, cparmeter@bus.miami.edu 



CENTER FOR POLICY RESEARCH – Summer 2020 
Leonard M. Lopoo, Director 

Professor of Public Administration and International Affairs (PAIA) 

Associate Directors 

Margaret Austin 
Associate Director, Budget and Administration 

John Yinger 
Trustee Professor of Economics (ECON) and Public Administration and International Affairs (PAIA) 

Associate Director, Center for Policy Research 

SENIOR RESEARCH ASSOCIATES 

Badi Baltagi, ECON 
Robert Bifulco, PAIA 
Leonard Burman, PAIA 
Carmen Carrión-Flores, ECON 
Alfonso Flores-Lagunes, ECON 
Sarah Hamersma, PAIA 
Madonna Harrington Meyer, SOC 
Colleen Heflin, PAIA 
William Horrace, ECON  
Yilin Hou, PAIA 
Hugo Jales, ECON 

Jeffrey Kubik, ECON 
Yoonseok Lee, ECON 
Amy Lutz, SOC 
Yingyi Ma, SOC 
Katherine Michelmore, PAIA 
Jerry Miner, ECON 
Shannon Monnat, SOC 
Jan Ondrich, ECON  
David Popp, PAIA 
Stuart Rosenthal, ECON  
Michah Rothbart, PAIA 

Alexander Rothenberg, ECON 
Rebecca Schewe, SOC 
Amy Ellen Schwartz, PAIA/ECON 
Ying Shi, PAIA 
Saba Siddiki, PAIA 
Perry Singleton, ECON 
Yulong Wang, ECON 
Peter Wilcoxen, PAIA 
Maria Zhu, ECON

GRADUATE ASSOCIATES

Rhea Acuña, PAIA 
Mariah Brennan, SOC. SCI. 
Ziqiao Chen, PAIA 
Yoon Jung Choi, PAIA 
Dahae Choo, ECON 
Stephanie Coffey, PAIA 
Giuseppe Germinario, ECON 
Myriam Gregoire-Zawilski, PAIA 
Jeehee Han, PAIA 

Mary Helander, SOC. SCI. 
Hyoung Kwon, PAIA 
Mattie Mackenzie-Liu, PAIA 
Maeve Maloney, ECON  
Austin McNeill Brown, SOC. SCI. 
Qasim Mehdi, PAIA 
Claire Pendergrast, SOC 
Krushna Ranaware, SOC 
Christopher Rick, PAIA 

Huong Tran, ECON 
Joaquin Urrego, ECON 
Yao Wang, ECON 
Yi Yang, ECON 
Xiaoyan Zhang, Human Dev. 
Bo Zheng, PAIA 
Dongmei Zuo, SOC. SCI. 

STAFF 

Joseph Boskovski, Manager, Maxwell X Lab 
Katrina Fiacchi, Administrative Specialist  
Michelle Kincaid, Senior Associate, Maxwell X Lab 
Emily Minnoe, Administrative Assistant 

Candi Patterson, Computer Consultant 
Samantha Trajkovski, Postdoctoral Scholar 
Laura Walsh, Administrative Assistant



1 Introduction

Deconvolution uses kernel techniques to estimate the density (the target density) of a random

variable (u) in the presence of an independent and additive noise term (v). Most deconvolu-

tion estimators are for a random cross-section of observations from a noisy random variable

(i.e., ε = u + v), where the noise distribution (fv) is known. If we know fv and (hence) its

characteristic function, then under regularity conditions we can calculate the empirical char-

acteristic function of ε and use the Fourier inversion formula to consistently point estimate

fu. Fan (1991) shows that convergence rates for kernel deconvolution estimators depend

on the smoothness of the noise distribution, where smoothness is characterized by the tail

behavior of the associated characteristic function. Specifically, if v is from the super-smooth

family (e.g., normal or Cauchy), the fastest convergence rate is logarithmic in the sample

size (n), and if noise is from the ordinary-smooth family (e.g. Laplace or gamma), the fastest

rate is polynomial in n.1

However, in applications (like the stochastic frontier model) it may be more practical

to assume that the noise distribution is known up to its variance. Hence, Meister (2006)

develops a semi-uniformly consistent estimator of the target density and the unknown noise

variance, when the noise density is super-smooth (e.g., normal) and the target density is

ordinary-smooth (e.g., gamma), which bounds the decay of the tails of its characteristic func-

tion.2 Horrace and Parmeter (2011) adapt the estimator of Meister (2006) to the stochastic

frontier model (Aigner et al., 1977), where the noisy random variable (ε) is appended to a lin-

ear regression model, v is normally distributed, and u is ordinary-smooth and non-negative.3

1We give a precise definition of smoothness in the sequel. Deconvolution applications for v normal (super-
smooth) abound. See Stefanski and Carroll, 1990; Neumann, 1997; Johannes, 2009; Wang and Ye, 2012.

2Others are Butucea and Matias (2004) and Butucea, Matias, and Pouet (2008). The Meister (2006)
estimator is uniformly consistent relative to the target distributional family but individually relative the
noise distributional family. That is, consistency of the estimator does not hold uniformly over all noise
distributions.

3Horowitz and Markatou (1996) consider deconvolution in the linear regression model for panel data.
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That is, for a linear production function with normally distributed (super-smooth) noise (v),

we may estimate the density of technical inefficiency (u), if it belongs to the ordinary-smooth

family (e.g., exponential or gamma). Unfortunately, the convergence results of Fan (1991)

still apply: both the Meister (2006) and Horrace and Parmeter (2011) estimators converge

at logarithmic rates. Therefore, it is natural to consider a version of Horrace and Parmeter

(2011) where noise is Laplace (ordinary-smooth), so as to achieve polynomial convergence

rates for estimators of the density of technical inefficiency. This is the goal of this paper.

Laplace noise is not unprecedented in the literature. Horrace and Parmeter (2018) de-

velop a parametric stochastic frontier model with Laplace noise which possess useful features

for ranking and selecting efficient firms.4 Meister (2004) shows that in a deconvolution prob-

lem if the noise distribution is misspecified, it is always better to assume Laplace noise rather

than normal, because normal noise produces infinite risk while Laplace noise produces finite

risk. A similar result arises in the simulations of Horrace and Parmeter (2018) who find

that the mean squared error (MSE) of the parametric stochastic frontier model is smaller

with Laplace noise than with normal noise under misspecification of the noise distribution.

Errors-in-variable models have recently considered Laplace errors. See Carroll et al. (2006),

Koul and Song (2014), Song et al. (2016), Cao (2016) and references therein. Finally, maxi-

mum likelihood estimation with Laplace errors produces the least absolute deviations (LAD)

estimator, and applications of this method are plentiful in statistics, finance, engineering,

and other applied sciences (see Dodge, 1987, 1992, 1997 and Dodge and Falconer, 2002).

Our aim here is to provide a complete account of Laplace kernel deconvolution and to

develop a regression-based deconvolution estimator that does not require the variance of the

Laplace distribution to be known. We modify the “variance truncation device” of Meister

(2006) to bound of the variance of the noise (v) with the variance of the noisy random

4Horrace and Parmeter do maximum likelihood estimation of the stochastic frontier model, not deconvo-
lution.
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variable (ε). Target density estimation is drastically improved (in terms of convergence) with

Laplace noise and is robust to misspecification of the noise distribution (per Meister, 2004).

Moreover, we offer practical guidance and an adaptive procedure for selecting the smoothness

parameters which are key to implementation of the proposed techniques (and which will be

discussed later). This adaptive procedure is new in the literature and offers sound footing

for practical use of these methods. Lastly, we apply the Laplace deconvolution estimator

to two restricted versions of the model: a stochastic (cost) frontier model (SFM), where

u is restricted non-positive, and a pure deconvolution problem, where the linear regression

parameters are restricted to equal zero.

The paper is organized as follows. In Section 2 we discuss the basic issues surrounding

deconvolution in the regression model and introduce the modified variance truncation device

under Laplace errors (noise). Section 3 derives large sample properties of the estimator

under certain regularity conditions. Two extensions are considered in Section 4. Section

5 contains a variety of Monte Carlo results demonstrating the finite sample performance

of the proposed estimator as well as issues pertaining to robustness of the choice of the

Laplace noise. In Section 6 we provide two practical applications to illustrate the utility of

the proposed methodology. Conclusions are in Section 7.

2 The Laplace Convolution Problem

Consider the error component model (ECM) in the cross sectional setting:

yj = x′jβ + uj + vj = x′jβ + εj, j = 1, . . . , n. (1)

Here j indexes individuals or firms, β is a parameter vector of dimension q to be estimated

and exogenous covariates are x ∈ Rq. The ε is a composed error term, u is the target error

3



component, and v is statistical noise. Depending on assumptions on u, the model in (1)

can be a cross sectional stochastic frontier model (e.g., u ∼ Exp(σ2
u)), a linear regression

with measurement error (e.g., yj = x∗jβ + vj, where x∗j = xj + ej, uj = β ∗ ej), or a pure

measurement error model (e.g., β = 0). A large statistical literature investigates the β = 0

model with known or partially-known error distribution of v (see Meister, 2009).5 In this

setting, deconvolution is complicated by the fact that only cross sectional data are available.

Following the literature (i.e., Fan, 1991; Meister, 2006; Horrace and Parmeter, 2011), we

make the following assumptions on the random components of the model and the covariates

when present.

Assumption 1. The xj, vj and uj are pairwise independent for all j = 1, . . . , n.

Let the probability densities of the error components be fv(z), fu(z) and fε(z) with

corresponding characteristic functions hv(τ), hu(τ) and hε(τ). Based on the independence

between vj and uj in Assumption 1,

hε(τ) = hv(τ)hu(τ). (2)

We restrict v to the family of Laplace densities with the following assumption.

Assumption 2. The distribution of v is a member of the Laplace family with zero mean and

unknown variance, i.e. L = {Laplace(0, b) : b2 > 0}.

Hence, the density of v is known up to its variance (2b2), and the characteristic function of

v is hv(τ) = (1 + b2τ 2)−1, so that,

hu(τ) =
hε(τ)

hv(τ)
= (1 + b2τ 2)hε(τ). (3)

5Neumann (1997), Johannes (2009), and Wang and Ye (2012) study deconvolution with fully unknown
error distribution but require either an additional sample of the error or repeated observations, yjt.
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We restrict u to be ordinary-smooth (Fan, 1991) with the following assumption.

Assumption 3. Assume u is ordinary-smooth. Namely, u belongs to the family Fu =
{
hu :

C1|τ |−δ ≤ |hu(τ)| ≤ C2|τ |−δ, for |τ | ≥ T > 0
}

where 0 < C1 < C2 and δ > 1, δ 6= 2.

Assumption 3 dictates tail behavior of the characteristic function of u (smoothness of the

density of u), and positive constants C1, C2 and δ are smoothness parameters. The lower

bound, C1, and upper bound, C2, ensure the rate of decay of the tails of the characteristic

function does not approach zero too rapidly or too slowly and are needed for identification.

Constants C1 and C2 become irrelevant when T gets large. Practically speaking, we only

use the lower bound to define our variance truncation device, so only C1 is relevant to our

estimator. We assume C1 and δ to be known for now but will relax this in the sequel.6

Constant δ is the smoothness order, ensuring polynomial tail behavior of the characteristic

function, and includes a wide array of nonparametric and analytical families (Horrace and

Parmeter, 2011). Common families and their polynomial smoothness orders are tabulated in

Table 1. For example, the Symmetric Uniform family of distributions has polynomial order

δ = 1, and the Laplace family has δ = 2. We restrict δ 6= 2 in Assumption 3 so that the

target density cannot be Laplace, allowing our estimator to appropriately assign the target

and noise distributions. That is, if u and v are both Laplace, we cannot determine which

distribution is the target and which is the noise.7 In the parlance of frontier estimation,

when δ = 2 we cannot distinguish the signal from the noise. Letting δ = 2 does not preclude

deconvolution per se. For example, the deconvolution convolution estimator of Dattner et

al. (2011) relies on very general classes of distributions for the target and noise densities

that includes the Laplace-Laplace convolution as a special case, and consistent target density

estimation is achieved as long as the error variance is known. The restriction in Assumption 3

6Knowing C1 and δ does not imply knowing V (u) nor does it uniquely determine the analytic family.
7We are grateful to an anonymous reviewer who alerted us to this identification issue. It should be noted

that the restriction eliminates a broad class of ordinary-smooth distributions, not just the Laplace.
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that δ > 1 does not preclude a nonparamteric family of densities in Table 1 that is arbitrarily

close to a family with δ = 1, like the Uniform or the Exponential (i.e, a Gamma with k = 1

in the table), which have both been employed in Stochastic Frontier Analysis.

Note that Meister (2006) assumes different distributional families for u and v (i.e.,

ordinary-smooth and super-smooth, respectively) and that simplifies derivation of the con-

vex upper bound of the criterion function in that paper. The intuition is that as n goes to

infinity the tail of hv (normal noise) decays faster than that of hu. Turning to Table 1, we see

that the normal distribution has polynomial order δ → ∞, so the intuition is justified.8 In

the current paper similar intuition applies, but the key here is that the tails of characteristic

function of u and v decay at different rates with the polynomial order of the noise decay

fixed at 2 by design.

Under Assumptions 2 and 3, the Fourier inversion formula returns the density of u,

fu(z) =
1

2π

∫
e−iτz(1 + b2τ 2)hε(τ)dτ, (4)

where i =
√
−1. If noise v ∼ G = {N(0, σ2) : σ2 > 0}, Meister (2006) shows that there is no

uniformly consistent estimator of fu(z) when σ2 is unknown. His deconvolution estimator of

fu(z) is semi-uniformly consistent in the sense that for a given density in G whose variance

is bounded, a deconvolution estimator is uniformly consistent but not uniformly consistent

over all densities within G. This is the price one pays for not knowing the variance. Here

we focus on the Laplace noise case with unknown variance. As we shall demonstrate, with

Laplace noise one still pays a price for not knowing the variance, but the cost is not as high

as in the case with normally distributed noise.

Since hε is unknown, we may rely on the empirical characteristic function to recover the

8Indeed neither the Normal nor Cauchy families of distribution are ordinary-smooth; they are super-
smooth. See Fan (1991).

6



density of u based on equation (4),

ĥε(τ) =

∣∣∣∣ 1n
n∑
j=1

eiτεj
∣∣∣∣. (5)

As mentioned previously, εj is unobserved when β 6= 0. Therefore, we must estimate it by

consistently estimating the unknown parameter β first. That is, for a consistent estimator

βn, define ε̂j = yj − x′jβn. Again, we take advantage of the empirical characteristic function

of the residuals, which is defined as

ĥε̂(τ) =

∣∣∣∣ 1n
n∑
j=1

eiτ ε̂j
∣∣∣∣. (6)

Replacing hε with ĥε or ĥε̂ in equation (4) does not ensure that the integration exists, so

we convolve the integrand with a smoothing kernel (Stefanski and Carroll, 1990). Define

a random variable z with the usual Parzen (1962) kernel density K(z) and corresponding

(invertible) characteristic function hK(τ). Finite support of the characteristic function hK(τ)

is required to ensure the integrand exists and the resulting estimate is a valid density function.

Using K(z) = (πz)−1sin(z), (hK(τ) = 1{|τ | ≤ 1}), our estimator of the density of u is,

f̂u(z) =
1

2π

∫ wn

−wn
e−iτz(1 + b̂2

nτ
2)

∣∣∣∣ 1n
n∑
j=1

eiτ ε̂j
∣∣∣∣dτ, (7)

where the limits of the integration are a function of an increasing sequence of positive con-

stants wn, which represent the degree of smoothing. In the sequel, {wn}n∈N, {kn}n∈N and

{b2
n}n∈N denote sequences of positive numbers which will be determined later. kn is an in-

termediate sequence that will be useful for the case where C1 and δ are unknown. When C1
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and δ are known, set wn = kn.9

Due to the upper and lower bound conditions on the target density function in Assump-

tion 3, we propose an estimator of unknown error variance parameter, b2. Therefore, setting

b̃2
n = k−2

n

(
C1k

−δ
n

ĥε̂(kn)
− 1
)

with constants δ > 1 and C1 > 0, we propose an explicit truncation

device for the unknown variance parameter:

b̂2
n =


0 if b̃2

n < 0

b̃2
n if b̃2

n ∈ [0, b2
n]

b2
n if b̃2

n > b2
n,

(8)

where the variance parameter bound is b2
n = 1

2
V (ε̂), half the variance of the estimated sum

of the error components. The intuition is that we choose an increasing sequence to cover

the unknown variance parameter, b̃2
n, but bound it by half the total variance.10 This is a

modified version of the variance truncation device of Meister (2006).

What distinguishes our truncation device from that in Meister (2006) is that the variance

of the estimated compound error is incorporated as a natural upper bound of the unknown

variance of random noise v. Compared to the variance truncation device of Meister (2006),

ours is more informative and converges faster, while still covering the unknown error variance

associated with Laplace errors. Meister (2006) uses the bound b2
n = 1

4
ln lnn for deconvo-

lution with normal errors, and his bound arises directly from the characteristic function of

the normal distribution and implicitly requires a very large sample size n. The modified

truncation device, b̂2
n, is an important contribution of this paper which can also be applied

in the setting of Meister (2006). Its attractiveness and usefulness will be demonstrated in the

simulation section. We now discuss semi-uniform consistency of the Laplace deconvolution

9In Section 4, we propose setting wn = kn/ ln kn in the case C1 and δ are not fully known.
10Recall that for a Laplace distribution as defined in Assumption 2, the variance is V (v) = 2b2. Moreover,

V (v) < V (ε) under Assumption 1. Hence, a natural upper bound for b2 is one-half the variance.
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estimator in equation 7.

3 Asymptotic Theory

To demonstrate that the unknown variance deconvolution estimator retains its asymptotic

properties when the composed error is estimated, we introduce two additional conditions

that will be useful in the Lemmas and Theorem to follow.

Assumption 4. The distribution of x has bounded support.

Assumption 5. The estimator βn converges at a rate of square root n. That is,
√
n(βn−β) =

Op(1) as n→∞ .

Assumption 4 follows Horowitz and Markatou (1996) while Assumption 5 guarantees that

the difference between the composed errors and estimated errors is asymptotically negligible.

In the pure deconvolution problem, β = 0, Assumption 5 is trivially satisfied. Moreover, the

conditional mean function x′jβ may suffer from misspecification but can be estimated with a

nonparametric na convergence rate and a = 2
4+q

. We will discuss this case in the extensions

in Section 4.

To establish semi-uniform consistency of f̂u, we introduce the following lemmas.

Lemma 1. For Assumptions 1, and 3-5 and Ln = {Laplace(0, b) : b2 ∈ (0, b2
n]}, the mean

integrated squared error (MISE) of (7) is

sup
g∈Ln

sup
f∈Fu

Ef,g||f̂u − fu||2L2
≤ B + V + E,

where B ≤ const1 × w1−2δ
n ,

9



V ≤ const2 × n−1wn(1 + b2
nw

2
n)2 + const3 × n−1w3

n(1 + b2
nw

2
n)2 ,

E ≤ const4 × supg∈Ln supf∈Fu

(
wn
∫ 1

−1
|hu(swn)|2

(
dn
b2

)2
ds+ wn

∫ 1

−1
|hu(wns)|2 b

4
n

b4
× Pf,g(|b̂2

n −

b2| > dn)ds
)

, with dn := 1
wn

; f and g are the probability density function in distribution

family Fu and Ln, respectively, and constj are positive constants for j = 1, 2, 3, 4.

The proof is in the appendix. Notice the distinction between Ln above and L in As-

sumption 2. The former is the family of Laplace distributions with an upper bound on the

variance and is a subset of the latter.11 Following Horrace and Parmeter (2011), the B term

is a bias component which is bounded by the ordinary-smoothness of fu under Assumption

3. The V terms are variance components. The E term is a hybrid bias-variance component

in which the first integral behaves like squared bias and the second integral looks like a vari-

ance. This entire bound exhibits the usual bias-variance trade-off in nonparametric density

estimation. Note that the second addend of V arises from the regression function, which

does not appear in the pure deconvolution setting of Meister (2006).

Establishing the convergence rate of E is not straight-forward. We need the following

Lemma to assist in determining it.

Lemma 2. Let dn, f and g be the same as in Lemma 1. Then supg∈Ln supf∈Fu Pf,g
(
|b̂2
n−b2| >

dn
)
≤ const× n−1k2δ

n (1 + b2
nk

2
n)(1 + k2

n).

The proof is in the appendix. Compared to deconvolution with normal noise in Horrace

and Parmeter (2011), estimation of ε matters here. That is, the conditional mean function

in Horrace and Parmeter (2011) is linear, so their estimated error converges at a rate n1/2,

which is much faster than the logarithmic rate of their target density estimator. Therefore,

estimation of the error can effectively be ignored. Here, both βn and f̂u converge at poly-

11In Meister (2006), the bounding of the normal variance is what leads to semi-uniformly consistency (as
opposed to uniform consistency). Here, for Laplace errors, we still impose this “strong” condition for ease
of proof. However, it may not be a necessary condition.
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nomial rates, so there is an additional effect on the convergence rate of the estimator of the

target density.12 Given that we replace ε with a consistent estimator, we have an additional

term k2
n in Lemma 2, as well as the characteristic function of the Laplace distribution, em-

bodied in the term (1+b2
nk

2
n). The second addend of E in Lemma 1, together with the upper

bound of B and the first term in E, ensures convexity of the entire bound with respect to

the bandwidth parameter kn. Therefore, the optimal bandwidth wn, which is a function of

kn, and the entire convergence rate of the density estimator can be determined.

Notice that neither of the proofs of the above two lemmas leverage anything on the as-

sumption that the smoothness parameters of the target density are known (or not). However,

for joint minimization of the upper bounds of MISE of Lemma 1, this assumption plays a

role. That is, if the smoothness parameters are fully known (i.e., C1 and δ) tight bounds can

be achieved by setting wn = kn; otherwise, the best general upper bound can be reached by

setting wn = kn/ ln kn. The latter case is considered in the next section. First, we introduce

the following theorem when C1 and δ are known.

Theorem 1. Assume δ and C1 are known. Under Assumption 1, 3-5, set {b2
n}n∈N = 1

2
V (ε̂)

and wn = kn with {kn}n∈N = {( n
b2n

)
1

6+2δ }n∈N, if 1 < δ ≤ 1.5 or {kn}n∈N = {( n
b8n

)
1

3+4δ }n∈N, if

δ > 1.5. For any g ∈ Ln, the proposed deconvolution kernel density estimator in equation

(7) is bounded from above as follows:

sup
fu∈Fu

Ef,g||f̂u − fu||2L2
≤ n−

2δ−1
6+2δ if 1 ≤ δ ≤ 1.5,

12The compound effect of estimating the regression function will slow the target density rate compared to
pure (non-regression) deconvolution, but the final rate is not a simple algebraic sum of the rates.
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and

sup
fu∈Fu

Ef,g||f̂u − fu||2L2
≤ n−

2δ−1
3+4δ if δ > 1.5

where δ is defined in Assumption 3.

The proof is in the appendix. The proposed density estimator is semi-uniformly consis-

tent. That is, f̂u is uniformly consistent over a given class of Laplace distributions Ln. The

optimal convergence rate for an ordinary-smooth target density is achieved in a minimax

sense. It is similar to the conclusions in Fan (1991), even though in this exercise the variance

of the noise distribution is unknown and the composed error needs to be estimated. The

polynomial convergence rate plays a role in the following sense. After imposing the modified

variance truncation device, which is the proposed best choice one can use for unknown vari-

ance, and after deriving the optimal sequences for convergence (i.e., the order of the positive

sequence {kn}n∈N), we still achieve a polynomial convergence rate which is consistent with

the lower bound derived by Fan (1991).

At first glance the Theorem 1 is similar to Theorem 2 in Meister (2006), but there

are three major differences: (i) the upper bound of the noise v is not a known constant

but a consistently estimated (at
√
n rate) quantity (i.e., 1

4
ln lnn versus 1

2
V (ε̂)); (ii) the

chosen sequences are functions of the target density smoothness order, δ, which is due to

the characteristic function of the Laplace noise, leading to different convergence rates (or

effective sample size as shown in Table 2); and (iii) we consider estimation in the regression

setting, which is more general than the pure deconvolution setting (β = 0), and yields

different convergence rates with Laplace noise. In Horrace and Parmeter (2011) this last

difference was easily handled, given the slow convergence of the density estimator due to

the assumption of super-smooth noise. It is more nuanced in the context of Laplace noise,

given the polynomial rate of convergence. This has important implications if one were to

12



estimate the unknown conditional mean using nonparametric methods. We discuss this and

other extensions of the Laplace deconvolution estimator in the next section.

4 Some Useful Extensions

We discuss two useful extensions to the Laplace deconvolution estimator which are likely to

arise in applications: (i) C1 and δ are unknown in Assumption 3 and (ii) deploying nonpara-

metric regression to estimate the unknown conditional mean needed to subsequently recover

ε̂. It is rare in applications that researchers have information on the target density. This

leads to uncertainty in C1 and δ, two parameters which are important in the implementation

of our estimator.13 Also, if we wish to follow the work of Fan, Li and Weersink (1996) and

estimate the unknown regression function nonparametrically, then we must think carefully

about the relative polynomial convergence rates of the deconvolution estimator and the non-

parametric regression estimator. This is not a consideration with normal noise due to the

logarithmic convergence rates it produces.

4.1 Selection of Unknown C1 and δ

In the usual case that δ and C1 are unknown and, therefore, might be misspecified,14 we

could apply the following selection rule due to Meister (2006):

Selection rule 1. If C1 and δ are unknown, we specify one set of {C1, δ} and choose

wn = kn/ ln kn.

13... and the estimator of Meister (2006) as well.
14Actually, if one wants to assume the random noise is super-smooth with similarity index s, the smoothness

parameter δ of target density can be estimated as well as the s by an adaptive procedure proposed by Butucea,
Matias and Pouet (2008).
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An alternative rule may be based on our procedure when δ and C1 are known. First, we

specify one set of parameters {C1, δ} to pin down the variance truncation device defined in

Section 2, and then by Lemmas 1 and 2 we determine the optimal choice for the sequence

{kn}n∈N. The trade-off is a slower convergence rate of the estimated target density compared

with that in the fully-known case due to lack of information about the target density. This

implicitly requires a larger n to achieve a reliable estimate of the target density. This can

be seen from following theorem.

Theorem 2. Assume δ and C1 are unknown. Under Assumption 1, 3, 4, and 5 set {b2
n}n∈N =

1
2
V (ε̂) and wn = kn/ ln kn with {kn}n∈N = {( n

b2n
)

1
6+2δ }n∈N, if 1 < δ ≤ 1.5, or {kn}n∈N =

{( n
b8n

)
1

3+4δ }n∈N, if δ > 1.5. For any g ∈ Ln, the proposed deconvolution kernel density estima-

tor in equation (7) is bounded from above as following:

sup
fu∈Fu

Ef,g||f̂u − fu||2L2
≤ (n/ lnn)−

2δ−1
6+2δ if 1 < δ ≤ 1.5

and

sup
fu∈Fu

Ef,g||f̂u − fu||2L2
≤ (n/ lnn)−

2δ−1
3+4δ if δ > 1.5

where δ is defined by Assumption 3.

The proof is similar to that of Theorem 1 in the appendix and is contained therein. The

only difference between the bounds in Theorem 1 and in Theorem 2 is that the bounds

are negative exponents of n in the former and of n/ lnn in the latter, and this is the price

one pays for not knowing the smoothness parameters of the target density. Based on the

Theorem 2 and Table 1, we propose a rule-of-thumb adaptive procedure as follows:

Step 1: Set initial estimates for C1 and δ. A useful rule-of-thumb is C1 is commonly between
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0 and 1; δ is between 1 and 10.

Step 2: Treating this C1 and δ as “known,” select kn = wn and apply the proposed deconvolu-

tion techniques to construct the estimated target density, f̂known(u), say.

Step 3: Now, with the same C1 and δ assume they are unknown and select wn = kn/ ln kn.

Again, apply the proposed deconvolution estimator to construct the estimated target

density as f̂unknown(u), say.

Step 4: Compare the vector of values f̂known(u) and f̂unknown(u) over a discretized support with

a Euclidean distance measure (e.g., ∆ = ||f̂known(u) − f̂unknown(u)||2). Iterate Steps 1

to 3 until ∆ is smaller than a pre-specified threshold, say 0.0001.

One caveat with this iterative approach is that ∆ may be quite large initially. The

essential point is that more information about the underlying distribution is revealed after

several trials with combinations of the smoothness parameters. This is similar in spirit to

the adaptive procedure proposed by Butucea, Matias and Pouet (2008), but their targets

are a “self-similarity index” and a smoothness parameter with super-smooth noise, and not

a target density.

4.2 Nonparametric Estimation of the Conditional Mean

If one is unsure of the linear specification of the conditional mean, equation (1) can be

generalized to the nonparametric case as follows:

yj = g(xj) + uj + vj j = 1, 2, . . . , n (9)
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where g(.) is unknown and x ∈ Rq. Under certain regularity conditions,15 a straightforward

nonparametric kernel estimator for the unknown function g(x) is:

ĝ(x) =

∑n
j=1 YjK(

Xj−x
λ

)∑n
j=1 K(

Xj−x
λ

)

where K(·) is the standard Gaussian kernel with bandwidth λ. Note that since the con-

vergence rate of the nonparametric estimator is a polynomial function of the number of

covariates, this may impact application of the Laplace deconvolution estimator.

By Theorem 2.6 (with Condition 2.1) of Li and Racine (2007), the convergence rate of

the estimated function is:

sup
x∈S
|ĝ(x)− g(x)| = O

(
(lnn)0.5

(nλ1 · · ·λq)0.5
+

q∑
s=1

λ2
s

)
a.s.

Assuming each bandwidth (λs) has the same order of magnitude, the optimal choice of

λs that minimizes MSE[ĝ(x)] is λs ∼ n−
1

4+q , and the resulting MSE is therefore of order

O(n−
4

4+q ). Consequently, the estimated error, ε̂, is na consistent where a = 2
4+q

. That is,

na(ε̂− ε) = Op(1) as n→∞.

Similarly, we can establish the convergence rate as follows:

Theorem 3. Under Assumptions 3-5, and Condition 2.1 in Li and Racine (2007) set

{b2
n}n∈N = 1

2
V (ε̂) and wn = kn with {kn}n∈N = {( n

b2n
)

2a
6+2δ }n∈N, if 1 < δ ≤ 1.5, or {kn}n∈N =

{( n
b8n

)
2a

3+4δ }n∈N, if δ > 1.5. For any g ∈ Ln, the proposed deconvolution kernel density estima-

15Details see Condition 2.1 in Li and Racine (2007).
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tor in equation (7) is bounded from above as follows:

sup
fu∈Fu

Ef,g||f̂u − fu||2L2
≤ n−

2a(2δ−1)
6+2δ if 1 < δ ≤ 1.5

and

sup
fu∈Fu

Ef,g||f̂u − fu||2L2
≤ n−

2a(2δ−1)
3+4δ if δ > 1.5

where a = 2
4+q

and δ is defined by Assumption 3.

The proof is very similar to the proof of Theorem 1 in the appendix, and a sketch of the

proof is contained therein.

5 Monte Carlo Simulations

We present a Monte Carlo study of the finite sample properties of the Laplace deconvolution

estimator. For ease of comparison, we follow the sample designs of Meister (2006) and Hor-

race and Parmeter (2011) except that we consider performance of the Laplace deconvolution

with both Laplace noise (correctly specified) and normal noise (misspecified). We focus on

sample sizes of n = 500, 1,000, and 3,000 with the linear model:

yj = 4 + 3xj + vj + uj, j = 1, . . . , n. (10)

The xjs are generated from a standard normal distribution. Random noise vj is generated

from either a standard Laplace (correctly specified) or normal (misspecified) distribution for

a range of values of the variance to produce several signal-to-noise settings. The ujs are

generated from the twice convolved, zero-mean Laplace density for which the probability
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density function is L̃(x) = 1
4
e−|x|(|x| + 1).16 We fix the variance of u to 2. In this setting it

is known that C1 = 1/4, δ = 4 and T = 1.17

Following Theorem 1, we choose b2
n = 1

2
V (ε̂) where ε̂ is the residual from the first-step

ordinary least squares (OLS) estimation, and kn = n
1

4δ+3 (b2
n)

−4
4δ+3 = n

1
19 (b2

n)−
4
19 , correspond-

ingly as δ = 4 > 1.5. To explore the impact of the relative ratio of the component variances,

we consider different scenarios of the signal-to-noise ratio which is defined as the ratio of

V (u) and V (v): γ := σ2
u/σ

2
v ∈ {1/2, 1, 2}. We also apply our Laplace deconvolution esti-

mator in the misspecified case where the errors are normally distributed. We compare the

performance of our estimator under misspecification to the normal deconvolution estimator

of Meister (2006) which is correctly specified. Even in this case, our estimator performs fairly

well. We also explore the finite sample performance of our proposed rule-of-thumb adaptive

procedure when the smoothness parameters of the target density are unknown.

The performance of our estimator is assessed through the root mean integrated square

error (RMISE):

RMISE(f̂u) =

√√√√ 1

R

R∑
l=1

1

M

M∑
i=1

(f̂l(ui)− f(ui))2 (11)

where R is the number of replications and M = 256 is the number of evaluation points over

u ∈ (−5, 5), which is fixed across the R replications.

5.1 Laplace Deconvolution with Laplace Errors

First, we consider the case that the random noise vj is correctly specified (i.e., vj is drawn

from a Laplace distribution with variance 1). Figures 1-3 show the results for a single

random draw (R = 1) across various sample sizes {500, 1,000, 3,000} and compare the

proposed estimator (CHP ) to the true unknown density (True). The graphical fit of the

16This follows from the setting in Meister (2006).
17We are not concerned with C2, since it has no bearing on any calculations for the estimator.
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proposed estimator is quite good with only 500 observations (Figure 1). Most of the bias

comes from estimation around the mode.18 As the sample size increases, the RMISE of the

proposed estimator (CHP ) decreases from 0.0148 (Figure 1) to 0.0142 (Figure 2) and to

0.0125 (Figure 3).

Figures 4-6 show the results for a single draw (R = 1) and fixed sample size n =1,000

but varying the signal-to-noise ratio σ2
u/σ

2
v = 2/1, 2/2, 2/4. The proposed estimator (CHP )

works very well when σ2
u/σ

2
v = 2/1 with 1,000 observations. As the signal-to-noise ratio

decreases, the RIMSE of proposed estimator (CHP ) increases from 0.0136 (Figure 4) to

0.0142 (Figure 5) and to 0.0180 (Figure 6). Even for the noisiest case (Figure 6) with

σ2
u/σ

2
v = 2/4, the fit is very good except in an interval around the mode.

Table 3 contains detailed results from R = 500 simulations with varying sample sizes

{500, 1,000, 3,000} and signal-to-noise ratios {1/2, 1, 2}. For each signal-to-noise setting

(each column), the RMISE decreases monotonically as the sample size increases from 500

to 3,000 (down the rows), demonstrating the consistency of the proposed estimator (CHP ).

Unexpectedly, the RMISE is not increasing as the signal-to-noise ratio increases across the

columns. This is an atypical finding that is due to the variance truncation device: when the

variance of the random noise is relatively small, the estimated variance parameter b̂2
n is more

likely to be closer to zero which dilutes the ability of the deconvolution estimator to recover

the target density. Alternatively, when the variance of the random noise is relatively large,

the estimated variance is no longer near zero, but the performance of the deconvolution

estimator deteriorates as there is little information in the target density taken from the

compound errors. This is a limitation of the variance truncation device.

18Estimation of a density around the mode is difficult due to the derivative at the mode being zero
(Henderson and Parmeter, 2015).
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5.2 Laplace Deconvolution with Misspecified Noise

To understand the impact of misspecification of the noise distribution, we consider the per-

formance of the proposed estimator when the true noise is distributed normal. We compare

the performance of our proposed estimator (CHP ) with that of Meister (2006).

As a first pass on the empirical performance, Figures 7-9 show the results for the case

with fixed σ2
u/σ

2
v = 2/2 for a single draw (R = 1) across various sample sizes. The proposed

estimator (CHP ) shows decent performance even with sample size of n = 500 (Figure 7).

The figure contains plots of the proposed estimator (CHP ), the estimator of Meister (2006)

(Meister06), and the true normal density (True). As the sample size increases, the RMISE

of the proposed estimator (CHP ) changes from 0.0151 (Figure 7) to 0.0156 (Figure 8) to

0.0137 (Figure 9). Our estimator (CHP ) performs as well as Meister’s when the sample

size is large (n = 3, 000). An intuitive explanation is that the proposed estimator converges

faster than Meister’s estimator (even under misspecification).

Figures 10-12 show the results for R = 1 and fixed sample size n = 1, 000 across the

various signal-to-noise ratios. The proposed estimator (CHP ) performs quite well in the

least noisy case even though the error distribution is misspecified. As the signal-to-noise

ratio decreases, the RIMSE of the proposed estimator increases from 0.0155 (Figure 10) to

0.0156 (Figure 11) and to 0.0191 (Figure 12) whereas the RMISE of Meister’s estimator

increases from 0.0120 (Figure 10) to 0.0172 (Figure 11) to 0.0260 (Figure 12). When the

signal-to-noise ratio decreases from 1 to 0.5 (Figures 11 and 12, respectively) the misspecified

estimator even outperforms Meister’s estimator.

Table 4 presents the results of R = 500 replications across various sample sizes and signal-

to-noise ratios under misspecification. Though misspecified, the RMISE of the proposed

estimator decreases monotonically as the sample size increases (down each column) for each

signal-to-noise ratio setting, and it is comparable to that of Meister’s correctly specified
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estimator. In the most noisy setting, σ2
u/σ

2
v = 2/4, the proposed estimator outperforms

Meister’s estimator across all sample sizes. This may be due to the faster convergence rate

of the proposed estimator coupled with the fact that the characteristic functions of the

normal and the Laplace are quite similar.19 Fixing the sample size (within each row), both

RMISEs increase when the signal-to-noise ratio decreases as the information that can be

recovered is reduced. Overall, the proposed estimator is robust to misspecification of the

error distribution and its convergence rate is faster than that of Meister’s estimator.

5.3 Deconvolution With Unknown Smoothness Parameters

To verify the feasibility and performance of the proposed rule-of-thumb adaptive procedure

for unknown smoothness parameters of section 4.1, a set of simulations are performed. We

employ the same simulation design. Specifically, the true target density is still a twice-

convolved Laplace with true smoothness parameters of C1 = 1/4 and δ = 4. We search on a

two-dimension grid of C1 ∈ {0.1, 0.25, 0.40, 0.55, 0.70, 0.85} and δ ∈ {2, 4, 6, 8} to minimize

the Euclidean distance of the two estimated densities: the estimated density assuming the

chosen C1 and δ are known and the estimated density assuming these parameters are un-

known. We restrict the range of u to be (−5, 5) and evaluate over 128 evenly spaced points

within this range.

Figure 13 shows the estimated densities (labeled CHP for the estimate with known

smoothness parameters and CHPUN for the estimate with unknown parameter) and the

true density (labeled True) for one simulation (R = 1) with sample size n = 1, 000 and

signal-to-noise ratio equal to 1. The chosen smoothness parameters are: C1 = 0.1 and δ = 2.

Even though the chosen smoothness parameters are misspecified (not exactly equal to the

their true values C1 = 1/4 and δ = 4), the overall fit of the density with estimated parameters

19Actually the characteristic function of the Laplace distribution is the second order Taylor expansion of
that of a normal random variable with same variance (Hesse, 1999).
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is quite good (CHPUN) and appears to be better than the fit assuming the true values of

the parameters, particularly around the mode.20

A more comprehensive analysis is conducted in Figures 14-16. Figure 14 shows the

Euclidean distance of the estimated densities: ∆ = ||f̂known − f̂unknown||2, as a function of

the smoothness parameters for a single draw (R = 1). Figures 15 and 16 show the Euclidean

distance between the true density and the estimated density taking the chosen C1 and δ

as known, ||f̂known − ftrue||2, and unknown, ||f̂unknown − ftrue||2, respectively. A straight

comparison of the three figures indicates that the convergence pattern is almost identical

which means that minimizing the Euclidean distance of the estimated densities (Figure 14)

is almost equivalent to minimizing the Euclidean distance of the estimated density and the

true underlying density (Figures 15 and 16). Obviously, the Euclidean distance is smaller

for values around the true smoothness parameters (C1 = 1/4 and δ = 4) in this context.

Although it is a useful tool, our adaptive procedure comes with two caveats. First,

our Laplace deconvolution estimator assumes that the noise distribution is Laplace. If this

assumption is violated, the adaptive procedure may not perform as well as we see here.

Second, the Euclidean distance between the true density and the estimated density achieves

small values in a range of smooth parameters rather than at one specific point in Figure 14.

It indicates that the proposed rule-of-thumb adaptive procedure is informative for providing

a small range of the smoothness parameters rather than one optimal point.

To calculate the RMISE when the smoothness parameters are unknown, we replicate the

above simulations for R = 100 with various sample sizes and signal-to-noise ratios.21 The

results are presented in Table 5.22 Similar to Table 3, the convergence pattern still holds

20The reader is reminded that the fit of the estimated densities, whether with or without known smoothness
parameters, is a function of the Euclidean distance evaluated over the 128 points in their support. Therefore,
the relative fit of the densities with known and unknown parameters will vary over this support. That is, we
should not expect the density with known parameters to always have better fit than the estimated density
with unknown parameters. This is reflected in Figure 13

21We reduce the replication size from 500 to save computation time.
22We report the RMISE of f̂known here.
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when the sample size increases with fixed signal-to-noise ratios. That is, reading down the

columns, RMISE is decreasing in the sample size. As we read across RMISE columns within

a row, the RMISE is decreasing slightly and then increasing. We also report the chosen

smoothness parameters, δ and C1, based on minimizing the Euclidean distance in Table 5.

They vary slightly around 2 and 0.1, respectively. They are not always accurate (compared

to the true values) but still render reasonably good estimates of the target density.

6 Applications

In this section two applications demonstrate the utility of the proposed method. We consider

the parametric Laplace stochastic frontier model (Horrace and Parmeter, 2018), a regression-

based application of the method, and a second application where the outcome of interest,

daily saturated fat intake, is contaminated with measurement error (which we assume to

be Laplace) and β = 0 in equation (1). In the first application we assume the smoothness

parameters are known; in the second we use our adaptive rule-of-thumb to select them.

6.1 Stochastic Frontier Analysis

A typical parametric stochastic frontier model is equation (1), but restricting u < 0 (for a

production frontier) or u > 0 (for a cost frontier). Given distributional assumptions on in-

efficiency, u (e.g., exponential or half-normal) and noise, v (e.g., normal or Laplace), β may

be consistently estimated and used to calculate the conditional distribution of firm-level

inefficiency, which is typically characterized by the empirical distribution of u conditional

on ε (e.g., Jondrow et al. 1982). Much of the existing literature assumes normality of v

(i.e., super-smooth v) and then applies maximum likelihood estimation (MLE). Relaxing

parametric assumptions on the inefficiency distribution in these models is important, as ar-
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ticulated by Kneip, Simar, and Van Keilegom (2015, p.380) who note that “. . . there does

usually not exist any information justifying particular distributional assumptions on (ineffi-

ciency).” Additionally, Tsionas (2017, p.1169) suggests that a model constructed to provide

microfoundations for the presence of inefficiency “. . . does not make a prediction about the

distribution.” These statements underlie the importance of seeking alternative estimation

approaches to recover important features of the stochastic frontier model; those approaches

which eschew restrictive parametric assumptions are likely to curry favor among practitioners

and regulators alike.

There is also no reason to favor normally distributed errors in the stochastic frontier model

(Horrace and Parmeter, 2018). As such we apply our Laplace deconvolution estimator to

estimate the distribution of inefficiency from a cost frontier for US banks. The data come

from Feng and Serletis (2009) and are obtained from the Reports of Income and Condition

(Call Reports).23

The data are a sample of US banks covering the period from 1998 to 2005 (inclusive).

After deleting banks with negative or zero input prices, we are left with a balanced panel

of 6,010 banks observed annually over the 8-year period. A more detailed description of

the data may be found in Feng and Serletis (2009). For our purposes we ignore the panel

structure of the data and choose the most recent year data, 2005, for our example. The

goal of this exercise is to estimate the marginal distribution of u and compare it with the

typical half-normal distribution which informs practical choice of parametric assumption on

u, which , in turn, informs estimation of E(u|ε).24

The data contain information on three output quantities and three input prices. The

three outputs are consumer loans, Y1; non-consumer loans, Y2, which consists of industrial

23The data are publicly available on the Journal of Applied Econometrics data archive website
http://qed.econ.queensu.ca/jae/2009-v24.1/feng-serletis/.

24Once f̂u is obtained, one can estimate the efficiency score using numerical integration on a grid of ε̂. To
avoid an overloading of present paper, we stick to the estimation of marginal density of u.
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and commercial loans and real estate loans; and securities, Y3, including all non-loan financial

and physical assets minus the sum of consumer loans, non-consumer loans, securities and

equity. All outputs are deflated by the Consumer Price Index (CPI) to the base year of 1988.

The three input prices are: the wage rate for the labor, P1; the interest rate for borrowed

funds, P2 and the prices of physical capital, P3. The total cost, C, is the sum of three

corresponding input costs: total salaries and benefits, expenses on premises and equipment,

and total interest expenses. Our specification of output and input prices is the same as (or

very similar to) what is typical in the literature (see, for example, Feng and Serletis, 2009;

Kumbhakar and Tsionas, 2005.) The cost frontier model is

cj = α + x′jβ + uj + vj j = 1, . . . , n, (12)

where cj = lnCj; xj = lnXj with Xj including the three output quantities and three input

prices: Y1, Y2, Y3, P1, P2, P3; and uj > 0 is firm-specific inefficiency.

We estimate the distribution of cost inefficiency in three ways. First, we estimate a

fully parametric model, assuming v is distributed N(0, σ2
v) and u is distributed |N(0, σ2

u)|.

Our maximum likelihood estimates of the distributional parameters are σ̂u = 1.294 and

σ̂v = 0.989, implying E(u) = σ̂u
√

2/π = 1.033. Then, our estimate of the density of u is

|N(0, 1.2942)|, which is shown as the dotted line (SFA) in Figure 18. Second, we estimate

equation (12) by OLS. Figure 17 shows a histogram of the OLS residuals, ε̂j. The asymmetry

of the distribution (skew equals 1.550) suggests non-zero cost inefficiency.25 Selecting δ = 3

and C1 = 1 and using Theorem 1, the deconvolution estimator yields an estimate of σ2
v equal

to 0.0403.26 A plot of the density estimate, f̂u(u), is shown as the dashed line (CHP ) in

25It is interesting to note that with a skew of 1.55, this provides evidence against use of the half-normal
distribution.

26For the Laplace distribution, δ = 2; for convolved Laplace, δ = 4. The choice δ = 3 is between Laplace
and convolved Laplace.
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Figure 18. Third, using the procedure of Hall and Simar (2002) with a bandwidth of 0.3052,

we detect a jump discontinuity point in f̂u(u) at u = −0.355 which implies an estimate of

Ê(u) = 0.355. Then using the boundary kernel proposed by Zhang and Karunamuni (2000),

with an estimated error variance of 0.0403 (as before), the boundary bias corrected density

estimate is shown as the solid line (CHP E(u) bc) in Figure 18.27

Figure 18 shows all three density estimators for US bank inefficiency in 2005. Notice that

even without a boundary correction, the deconvolution estimator (CHP) has a thinner right

tail than the estimated half normal density (SFA). With boundary correction in place, the

deconvolution estimator (CHP E(u) bc) implies that US banks in 2005 have a much smaller

average inefficiency than parametric SFA would have predicted. This corresponds to the fact

that in 1998 there are 10,139 banks in the US and this number declined to 8,390 in 2005 due

to industry consolidation (Feng and Serletis, 2009).

Finally, there are at least two reasons to employ the proposed estimator: 1) the proposed

method provides a robustness check for the distributional assumptions made in a parametric

stochastic frontier model and 2) the skewness of the OLS residuals is greater than one,

which invalidates the choice of the half-normal assumption for the distribution of u (which

has maximal skewness of 1 by definition).

6.2 Daily Saturated Fat Intake With Measurement Errors

The data come from Wave III (1988-1994) of the National Health and Nutrition Examination

Survey, abbreviated NHANES III. Our interest is the survey response to daily saturated fat

intake of 3,551 women between the ages of 25 and 50. This data set is ideally suited to

our Laplace deconvolution estimator as it is well established that saturated fat consumption

is recorded with measurement errors. In fact, previous analysis of the NHANES Wave I

27For Laplace deconvolution, we can apply directly Example 1 in Zhang and Karunamuni (2000).
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(1971-75) and Wave II (1976-1980) data suggest that more than 50% of the variability in the

observed data may be due to measurement errors. See Stefanski and Carroll (1990), Carroll,

Ruppert and Stefanski (2006) and Delaigle and Gijbels (2004).

The data were originally recorded to explore the relationship between breast cancer and

dietary fat intake, see Jones et al. (1987). Stefanski and Carroll (1990) were the first to

consider nonparametric deconvolution techniques to estimate the underlying true density of

saturated fat intake, using NHANES I. Subsequently, Carroll, Ruppert and Stefanski (2006),

Delaigle and Gijbels (2004) and others applied deconvolution estimators to NHANES II. In

each of these applications a normal error distribution was assumed. To the best of our

knowledge we are the first to apply deconvolution techniques to NHANES III (and certainly

the first to apply Laplace deconvolution to any of these data). Here, saturated fat (fat) is

measured in milligrams per day, and we apply the same data transformation as Delaigle and

Gijbels (2004): log(fat+ 5).

To these data we implement a) the proposed estimator with Laplace errors (CHP ), b) the

estimator with normal errors due to Meister (2006) (Meister), and c) an error free estimator

(ErrorFree), based on pure kernel density estimation of the observed data assuming there

is no measurement error.28

First, we apply the proposed rule-of-thumb adaptive procedure to get a preliminary

estimate of the smoothness parameters since they are unknown. Specifically, we search

for the minimum of the Euclidean distance between the density estimator with unknown

smoothness parameters and density estimator with known smoothness parameter, ∆, over a

grid of δ ∈ {1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3} and C1 ∈ {0.1, 0.25, 0.40, 0.55, 0.70, 0.85, 1}.29

Figure 19 shows the surface of the Euclidean distance as a function of the smoothness

parameters over the grid. The ∆ increases as C1 rises from 0 to 1 except when δ is around

28We use the package “ksdensity” in Matlab for the ErrorFree case.
29We also tried larger range of δ and narrow down to this specific range by searching the minimum of ∆.

28



2. It seems that δ = 1.5 and δ = 3 yield the minimum distance. It turns out that when

δ = 3, the estimated density decreases very quickly and goes below zero and becomes volatile

when log(fat + 5) < 2 or log(fat + 5) > 4.5. Therefore, we consider the δ = 1.5 case to be

optimal. Specifically, we choose C1 = 1 and δ = 1.5 as our baseline model. We then consider

alternative specifications of the smoothness parameters as a robustness check.

Figure 20 presents the final results of the analysis. The estimated error variance is 0.065

based on the CHP estimator and 0.525 based on theMeister estimator in the baseline model.

The Meister error variance estimate is exceedingly large compared to the variance of the

observed (convoluted) data, 0.236.30 The CHP error variance estimate is more reasonable

in the sense of being less than the total observed variance, and its corresponding signal-to-

noise ratio is 0.275. This is consistent with the finding in the existing literature that about

30-50% of the variability of observed data is due to measurement error. The tail behaviors

in Figure 20 shows that the Meister estimator assigns more variance to the error variance

than expected and it decreases to zero very quickly. The CHP estimator extracts the target

density information based on the smoothness assumptions, which gives a reasonable variance

estimate and tends to have longer tails.31

The CHP density estimator based on the NHANES III data is quite similar to that of

Delaigle and Gijbels (2004), despite the fact that they used the NHANES II data, assumed

the error to be normal, along with differing identification assumptions. They experiment with

different “known” values of the signal-to-noise ratio, while we have to select the smoothness

parameters. The minor difference is that our estimated tails are slightly thicker than theirs,

however the means of the estimated densities are nearly identical.

As a robustness check, different combinations for the values of δ and C1 are considered

for the CHP estimator: C1 = 1 and δ = 1.5; C1 = 1 and δ = 2; C1 = 0.6 and δ = 1.5;

30It seems to violate the independence assumption between the target variable and the measurement error.
31Under Assumption 1, i.e., u and v are independent, the variance of Y should be the sum of the variances

of u and v. Empirically, this may not be the case for real data.
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C1 = 0.6 and δ = 2 in Figure 21. The baseline (C1 = 1, δ = 1.5) is in the upper-left

panel of the figure. As we move to different panels in the figures we change the values

of the smoothness parameters, so the CHP estimator is changing across panels, while the

ErrorFree estimator is fixed. For C1 = 0.6, δ = 1.5 (lower-left panel), the estimated error

variance of CHP is 0.019 which is less than the baseline model, and it has less fat tails.

For C1 = 1, δ = 2 (upper-right panel), the estimated error variance of CHP is 0 which

makes it nearly coincide with the ErrorFree case.32 This means that it is more difficult

for information on the measurement error to be be disentangled under these smoothness

assumptions. We can also vary C1 to recover certain information concerning the noise or the

error term. For instance, C1 = 0.6, δ = 2 (lower-right panel), the estimated error variance

of CHP is still 0 which renders an identical deconvolution density estimate. It seems that

the variability of δ dominates that of C1. This is intuitive as τ → ∞, the effect of C1 is

ignorable in Assumption 3.

7 Conclusion

This paper proposes a semiparametric estimator for a cross-sectional error component model.

Instead of focusing on the estimation of the model parameters with the typical assumption

of normality, we are interested in the density of the target error component. To estimate

the target density without fully known random noise, we modify the variance truncation

device proposed by Meister (2006) and extend the methodology to the framework of an error

component model with a Laplace noise term with unknown variance.

The density deconvolution estimator with Laplace noise has at least two attractive char-

acteristics for applied researchers: 1) it possesses a faster convergence rate than that of

32One point worth mentioning is that these minimax deconvolution techniques can produce error variance
estimates equal to zero as we vary the choice of C1 and δ. Recall that b̂2n is bound between 0 and 0.5V (ε̂).
When it happens, the deconvolution estimators will be very similar to the ErrorFree estimator.
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normal distributed noise (i.e., O(nc) versus O((lnn)c)) and 2) it is robust to misspecification

of the true underlying noise distribution. A third (potential) feature that practitioners may

find appealing is the Laplace noise generates different insights than normal noise: for ex-

ample, the LAD estimator rather than OLS, the Laplace stochastic frontier model (Horrace

and Parmeter, 2018) and the L-SIMEX estimator (Koul and Song, 2014).

For future research, it may be useful to extend the model to panel data and use it

to estimate both the target and noise distributions nonparametrically. For example, with a

nonparametric production or cost function this would imply a fully nonparametric stochastic

frontier model. Jirak, Meister and Reiss (2014) studied adaptive function estimation in

nonparametric regression with one-sided errors. Another interesting strand in this area

is to investigate the distribution of unobserved heterogeneity with proposed deconvolution

techniques. Recently, Evdokimov (2010) takes an initial step to explore that in a panel data

model and Ju, Gan and Li (2019) apply it to a labor data set.
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Table 3: RMISE for Laplacian Noise Deconvolution

n σ2
u/σ

2
v = 2/1 σ2

u/σ
2
v = 2/2 σ2

u/σ
2
v = 2/4

500 0.0162 0.0155 0.0204
1,000 0.0150 0.0143 0.0197
3,000 0.0138 0.0126 0.0190

Notes: Replication 500 times.
σ2
u

σ2
v

stands for the signal-to-noise ratio

Table 4: RMISE under Misspecification: Normal Noise Deconvolution

n
σ2
u/σ

2
v = 2/1 σ2

u/σ
2
v = 2/2 σ2

u/σ
2
v = 2/4

CHP Meister06 CHP Meister06 CHP Meister06

500 0.0155 0.0128 0.0186 0.0170 0.0242 0.0340
1,000 0.0143 0.0116 0.0168 0.0156 0.0234 0.0337
3,000 0.0129 0.0108 0.0152 0.0146 0.0230 0.0330

Notes: Replication 500 times.
σ2
u

σ2
v

stands for the signal-to-noise ratio.

Table 5: Simulation by Rule-of-Thumb Adaptive Procedure with Laplace Noise

N
σ2
u/σ

2
v = 2/1 σ2

u/σ
2
v = 2/2 σ2

u/σ
2
v = 2/4

RMISE Ave. δ Ave. C1 RMISE Ave. δ Ave. C1 RMISE Ave. δ Ave. C1

500 0.0139 2.02 0.10 0.0133 2.02 0.10 0.0244 2.04 0.10
1,000 0.0125 2.00 0.10 0.0112 2.00 0.10 0.0231 2.08 0.10
3,000 0.0110 2.00 0.10 0.0094 2.00 0.10 0.0221 2.00 0.10

Notes: Replication 100 times.
σ2
u

σ2
v

stands for the signal-to-noise ratio.
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Figure 1: Laplace Deconvolution (CHP): n = 500, σ2
u/σ
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Figure 2: Laplace Deconvolution (CHP): n = 1, 000, σ2
u/σ
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Figure 3: Laplace Deconvolution (CHP): n = 3, 000, σ2
u/σ

2
v = 2/2
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Figure 4: Laplace Deconvolution (CHP): n = 1, 000, σ2
u/σ
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Figure 5: Laplace Deconvolution (CHP): n = 1, 000, σ2
u/σ
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Figure 6: Laplace Deconvolution (CHP): n = 1, 000, σ2
u/σ

2
v = 2/4
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Figure 7: Misspecified Laplace (CHP) Deconvolution: n = 500, σ2
u/σ
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Figure 8: Misspecified Laplace (CHP) Deconvolution: n = 1, 000, σ2
u/σ
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Figure 9: Misspecified Laplace (CHP) Deconvolution: n = 3, 000, σ2
u/σ
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Figure 10: Misspecified Laplace (CHP) Deconvolution: n = 1, 000, σ2
u/σ
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Figure 11: Misspecified Laplace (CHP) Deconvolution: n = 1, 000, σ2
u/σ
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Figure 12: Misspecified Laplace (CHP) Deconvolution: n = 1, 000, σ2
u/σ

2
v = 2/4
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Figure 13: Deconvolution with Unknown Smooth Parameters, n = 1, 000, σ2
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Figure 14: Euclidean Distance Between f̂unknown and f̂known
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Figure 15: Euclidean Distance Between f̂known and True Density
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Figure 16: Euclidean Distance Between f̂unknown and True Density

Figure 17: Histogram of the Residuals
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Figure 18: Estimated density of inefficiency
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Figure 20: Density of the Logarithm of Daily Saturated Fat Intake, C1 = 1, δ = 1.5

Figure 21: Saturated Fat Intake with Various Values of C1 and δ
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