Policy Monitor

Regulation and Progress under the 1990 Clean Air Act Amendments

Bryan J. Hubbell*, Richard V. Crume*, Dale M. Evarts*, and Jeff M. Cohen†

Introduction

Air quality in the United States has improved dramatically in the past two decades as a result of aggressive air quality management programs, advanced research into the health and environmental effects of air pollution, and the development of new pollution control technologies (Bachmann 2007). The legal authority for federal air pollution control programs is derived from the Clean Air Act (CAA) and its amendments. The CAA of 1970 was the first major legislation granting far-reaching powers to the federal government to regulate air pollution sources and establish ambient air quality standards (Clean Air Act 1970). It established national ambient air quality standards (NAAQS) to protect public health in polluted areas, New Source Performance Standards (NSPS) to limit air pollution emissions from stationary (industrial) sources, National Emission Standards for Hazardous Air Pollutants to reduce emissions of particularly toxic air pollutants (air toxics), and a mobile source pollution control program. To allow states some autonomy in addressing their unique circumstances, state agencies were given flexibility in defining how the NAAQS would be achieved.

The CAA Amendments of 1977 established a New Source Review (NSR) program for areas of the United States not attaining the levels of the NAAQS (Clean Air Act Amendments 1977). This program mandated stringent controls on new industrial sources and required

*Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; e-mail: hubbell.bryan@epa.gov; crume.rick@epa.gov; evarts.dale@epa.gov; jeffcohen6@gmail.com
†Office of Atmospheric Programs, U.S. Environmental Protection Agency, Washington, DC 20004, USA.

The views presented here are those of the authors and do not necessarily represent those of the U.S. Environmental Protection Agency. No official agency endorsement should be inferred. The authors thank Teresa Clemons, Maureen Cropper, Ken Davidson, Steve Fruh, Rick Haeuber, Jenny Noonan, Rosalina Rodriguez, Erika Sasser, and Tim Smith for helpful comments and suggestions.

1Technically, the CAA of 1970 was actually a set of far-reaching amendments to the Clean Air Act of 1963. However, given the scope and importance of the 1970 CAA amendments, it is generally considered to be the genesis of modern air quality policy.
emissions from new sources to be offset by emission reductions from other industries in the nonattainment area. Similarly, a Prevention of Significant Deterioration (PSD) program was established for areas attaining the NAAQS, with the goal of preventing these areas from slipping into nonattainment status.

Experience with the 1977 Amendments revealed various gaps and deficiencies. The 1990 Amendments to the CAA addressed these concerns and put in place a number of innovative approaches to controlling pollution, which have resulted in lower air pollution emissions despite increased industrial production and automobile use (Clean Air Act Amendments 1990). These new programs included Maximum Achievable Control Technology (MACT) for stationary sources of air toxics, an acid rain program, and an expansion of permitting authority. Other provisions addressed modifications to the attainment and nonattainment provisions, greater enforcement authority, and more research on air pollution monitoring, characterization, and control. In addition to several highly effective CAA regulatory programs, voluntary initiatives have also contributed to improved air quality, as have international efforts aimed at reducing the transport of air pollution to the United States from overseas.

This article describes the 1990 CAA Amendments (CAAA), regulations issued by EPA following their passage, progress made in air quality management over the last twenty years, and the likely future direction for U.S. air quality management programs at the federal level. We provide a full account of regulations issued from 1990 to 2009, including those implementing new provisions under the CAAA of 1990 as well as those implementing provisions under the original CAA. The next section provides a description of the 1990 CAAA. This is followed by sections discussing the progress that EPA has made in establishing regulations to meet the requirements of the CAA and its amendments since 1990. The final section offers some conclusions and discusses key issues and trends that are likely to shape air quality management in the United States in the future.

The 1990 Clean Air Act Amendments

In crafting the 1990 CAAA, Congress sought to address three major environmental threats—acid rain, urban air pollution, and toxic air pollutants. There was also considerable interest in improving the nation’s air pollution permit program and increasing compliance with regulations through a strengthened enforcement program. The CAAA contained several innovative approaches, including market-based initiatives, performance-based standards, and emissions banking and trading provisions. This section summarizes the major provisions of the 1990 CAAA and the most significant changes made to the original CAA. The discussion is organized by CAAA title.²

Title I (Provisions for Attainment and Maintenance of National Ambient Air Quality Standards)

Title I of the CAAA addresses how states and the federal government should act to reduce emissions of pollutants that affect ambient air quality, and provides the basis for setting,

²The 1990 CAAA altered the structure of the titles of the original 1970 CAA. In this discussion, we reference the titles as laid out in the 1990 CAAA.
attaining, and maintaining NAAQS. It establishes time lines for attainment and the level of progress that states and the federal government are expected to make as they work toward eventual attainment of the standards.

The role of the primary NAAQS was established in the original Clean Air Act, Section 109:

National primary ambient air quality standards . . . shall be ambient air quality standards the attainment and maintenance of which in the judgment of the Administrator, based on such criteria and allowing an adequate margin of safety, are requisite to protect the public health.

In other words, the primary NAAQS are set based on an assessment of what the current science says about what level of ambient air pollution will protect public health with an adequate margin of safety. In and of themselves, the NAAQS do not result in a lowering of emissions or improvement in air quality. Rather, NAAQS establish the nation’s goals for clean air, reflecting the scientific record at the time of each review of the NAAQS.

In addition to the primary health-based NAAQS, EPA also sets secondary NAAQS to protect the public welfare from the adverse effects of ambient air pollution, including: (1) effects on soils, water, crops, vegetation, man-made materials, animals, wildlife, weather, visibility, climate, economic values, and personal comfort and well-being; (2) damage to and deterioration of property; and (3) hazards to transportation.

While the 1990 CAAA maintained much of the CAA’s Title I, it also established new provisions for the protection of visibility in and near national parks and other areas. Additionally, changes to Title I were made to provide different time lines and control requirements for ozone, particulate matter (PM), and carbon monoxide (CO) nonattainment areas that depend on the severity of the pollution problem. Finally, the 1990 CAAA required the federal government to implement regulations on several classes of mobile sources and consumer products in order to reduce emissions from these sources and assist states in attaining the NAAQS.

Title II (Provisions Relating to Mobile Sources)

Title II of the CAAA provides for the control of emissions from mobile sources through the setting of engine and fuel standards. This title covers all mobile sources of emissions, including onroad and offroad vehicles, recreational vehicles, airplanes and trains, marine vessels, and small engines (e.g., lawnmowers).

The 1990 CAAA addressed mobile sources in several ways. Tighter emissions standards were established for both automobiles and trucks, and manufacturers were required to reduce emissions from gasoline evaporation during refueling. Fuel quality has also been controlled by reducing gasoline volatility and the sulfur content of diesel fuel, requiring cleaner (reformulated) gasoline for cities with serious ozone problems, and specifying higher levels of alcohol-based oxygenated fuels to be produced and sold during the winter months in areas exceeding the federal CO standard.

NAAQS consist of four parts: (1) the indicator, or pollutant of concern; (2) the level of the standard; (3) the standard’s averaging time (e.g., annual, daily, or hourly); and (4) the form of the standard (i.e., the particular air quality statistic used to measure whether an area is meeting the standard; for example, the 98th percentile of daily average concentrations).
Title III (Air Toxics)

Title III of the CAAA addresses emissions of hazardous air pollutants (HAPs). The 1990 CAAA included a deliberate reshaping of the air toxics program. Specifically, it required EPA to publish a list of source categories responsible for emissions of 189 air toxics and to issue MACT standards for each category. Under these provisions, a distinction is made between major sources, which emit at least 10 tons per year of any air toxic or 25 tons per year of any combination of these pollutants, and area sources, which do not meet the emissions thresholds for major sources. Examples of area sources are auto body shops and dry cleaners, sources that individually may not emit much air pollution, but taken together represent a significant fraction of nationwide emissions.

MACT standards for new sources are based on the application of emissions control technology that is equivalent to the best-controlled similar sources found anywhere in the United States, although in establishing the required level of control EPA is allowed to take into consideration costs, other environmental impacts, and energy requirements. For existing sources, the standards are based on the average of the best performing 12 percent of existing sources. To control emissions from area sources, EPA may elect to establish standards based on generally available control technologies or operating practices. While MACT standards are technology-based, EPA must examine health risk levels at regulated facilities after eight years and tighten the standards for any facilities if necessary to reduce unacceptable residual risk.

Title IV (Acid Deposition Control)

Under the new Title IV, the 1990 CAAA establishes an Acid Rain Program (ARP) to control emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) from electricity generating utilities. The goal of the program is to decrease deposition of SO2 and NOx from the atmosphere that leads to acidification of sensitive water bodies in the eastern United States.

The 1990 CAAA marked another significant departure from earlier air quality policy by including a market-based approach (i.e., a cap-and-trade program) to address acid rain impacts on ecosystems. This cap-and-trade program achieves broad, regional emissions reductions by setting a mandatory cap, or maximum limit, on the aggregate emissions of all affected sources. The government distributes emissions allowances (either freely or by sale) that total no more than the cap and may be traded (purchased and sold), creating a market for allowances and establishing a price. The cap ensures that the emissions reduction goal is achieved while also providing flexibility to sources and predictability for the allowance trading market. Cap-and-trade works best on a regional or larger scale to address emissions from multiple sources that exhibit a range of control costs. Such programs can be designed to work with local air pollution control efforts, as demonstrated by the recent use of regional cap-and-trade programs to support attainment of NAAQS. Experience implementing the regional cap-and-trade programs for reducing acid rain demonstrates that by placing an economic value on reducing emissions, cap-and-trade rewards innovation and early reductions and

4The air toxics list was subsequently reduced to 188 when one contaminant was determined to be nontoxic.
can make significant environmental improvements economically feasible (Chestnut and Mills 2005).\(^5\)

Title V (Permits)

Title V of the 1990 CAAA establishes a new permitting authority. Previously, a new facility’s pollution control requirements were often scattered among numerous and sometimes conflicting state and federal regulations. The CAAA attempted to simplify this process, ensure compliance with all applicable requirements, and facilitate enforcement by incorporating all of a source’s permit obligations into a single permitting document (called a Title V Permit).

Other Changes

The 1990 CAAA also included new provisions for: (1) continuing the phase out of stratospheric ozone-depleting substances (Title VI) and (2) strengthening enforcement authorities and penalties for noncompliance (Title VII).

Progress in Air Quality Management

This section provides an account of most of the major rules and regulations that EPA has issued since the enactment of the 1990 CAAA.\(^6\) These regulations have led to significant improvements in U.S. air quality and have helped EPA to develop a better understanding of the complex factors underlying air pollution science and emissions control programs. The first part of the discussion focuses on Titles I–III of the CAAA. This is followed by a description of regional control programs, which addresses both Title I and Title IV programs, and a discussion of international cooperation on stratospheric ozone protection and U.S. efforts to reduce ozone-depleting substances under Title VI of the CAAA.

Setting and Attaining the NAAQS (Title I)

There are currently six pollutants—collectively referred to as the “criteria” pollutants—for which NAAQS have been established: CO, lead, NO\(_x\), ozone, PM, and sulfur oxides (SO\(_x\)). The NAAQS for these pollutants are reviewed on a five-year cycle, a process that includes a review of the science reported in an Integrated Science Assessment, a risk and exposure analysis, and a policy assessment document. In general, the secondary NAAQS reviews occur on the same schedule as the primary NAAQS. Costs and feasibility of implementation may not be considered in setting NAAQS.\(^7\)

\(^5\)More information on the ARP is provided in the next section.

\(^6\)Note that we focus on when rules or actions were first issued and in most cases do not discuss legal actions that may have followed.

\(^7\)For an excellent historical review of the NAAQS and their implementation in the United States, see Will the Circle Be Unbroken: A History of the U.S. National Ambient Air Quality Standards (Bachmann 2007).
Setting and Reviewing the NAAQS

EPA has reviewed (or is in the process of reviewing) each of the NAAQS at least once since 1990. The primary NAAQS, set to protect public health with an adequate margin of safety, have tended to receive the most attention and review. Even so, the primary NAAQS for CO, NO₂ (a surrogate measurement for all oxides of nitrogen, designated as NOx), and SO₂ (a surrogate measurement for all oxides of sulfur, designated as SOx) have not been revised since first set in 1971. The last review of the SO₂ and NO₂ primary standards was completed in 1996, when a decision was made to retain the existing standards. The NO₂ and SO₂ primary standards are currently being reviewed again and are expected to be completed in 2010. The last review of the CO standards was completed in 1994 and no change was made to the standard at that time. The CO standard is currently being reviewed, a process that is expected to be completed in 2011.

The primary standard for lead was unchanged for thirty years, from 1978 until 2008. In 2008, a review of the primary lead standard was completed, and EPA decided to lower the standard by an order of magnitude, from 1.5 micrograms per cubic meter (μg/m³) to 0.15 μg/m³.

The primary NAAQS for PM and ozone are generally considered to be the two most important health standards, given the relatively large number of areas with elevated levels of these pollutants and the serious health effects associated with exposure. The primary NAAQS for ozone have been reviewed twice since 1990. In 1997, the previous one-hour standard was maintained, but an additional standard was set for eight-hour daily maximum ozone concentrations at a level of 0.08 parts per million (ppm). This eight-hour standard was revised again in 2008, with the revised standard set slightly lower, at 0.075 ppm. EPA is reconsidering this decision, with a new rule due to be finalized in 2011.

The PM standards have also been reviewed twice since 1990. In 1997, EPA defined a new indicator for PM mass, PM₂.₅, which refers to particles less than or equal to 2.5 microns (μm) in diameter. Two standards for PM₂.₅ were set: an annual standard equal to 15 μg/m³ and a daily standard equal to 65 μg/m³. The level of the PM₁₀ standard (a standard for particles less than 10 μm in diameter that was established prior to the 1990 CAAA) was retained in 1997, although the form of the PM₁₀ standard was revised. The PM standards were reviewed again in 2006. At that time, EPA decided to (1) retain the PM₁₀ daily standard; (2) revoke the annual PM₁₀ standard; (3) lower the level of the daily PM₂.₅ standard from 65 μg/m³ to 35 μg/m³; and (4) retain the annual standard of 15 μg/m³ for PM₂.₅. EPA is currently reviewing the PM standards and is scheduled to complete the review in 2011.

EPA is currently reviewing the secondary standards for NOx and SOx and expects to complete this review in 2012. This is the first time that EPA is reviewing the secondary standards for NOx and SOx together, reflecting the interactions between these pollutants in determining the ecological effects associated with nitrogen and sulfur. This review may result in joint standards.

8The current levels of the NAAQS, including when these levels were originally set and reviewed, are presented in the online supplementary materials for this article.
Actions Taken to Attain NAAQS

The setting of NAAQS triggers a set of actions by EPA and the states aimed at attaining the NAAQS. These actions include: (1) the designation of areas as “nonattainment,” which indicates an area either failing to attain the level of the standard or contributing to another area failing to attain the standard; (2) the submission of a State Implementation Plan (SIP); and (3) the promulgation of rules and guidance to achieve reductions in emissions from sources in nonattainment areas. Because of the variable nature of controls that can be adopted to attain the NAAQS, it is not possible to provide specific estimates of the emissions reductions that will result from the attainment of the NAAQS. EPA provides some projections based on the application of least-cost controls in nonattainment areas as part of the Regulatory Impact Analyses that accompany NAAQS, but actual controls applied in nonattainment areas may differ substantially from these projections.

EPA is required to issue final designations for nonattainment areas no later than three years after finalizing new or revised standards, and states are required to submit non-attainment SIPs three years after finalizing designations. EPA issued a final rule on implementation of the 1997 ozone standards in 2005, which addressed how states should treat reasonably available control technology (RACT) and reasonably available control measures (RACM), reasonable further progress (RFP), modeling and attainment demonstrations, and NSR in the development of their SIPs. EPA issued a final rule for preparing SIPs for the PM$_{2.5}$ standards in 2007.

EPA also issues NSR and PSD regulations that apply to sources that are located within designated nonattainment areas. These regulations work together with NSPS for stationary sources to ensure that emissions reductions and prevention lead toward attainment of the NAAQS. In 2003 EPA issued a rule covering PSD and Nonattainment NSR regarding equipment replacement and maintenance, and in 2004 EPA issued a rule addressing approval and promulgation of PSD implementation plans.

The primary purpose of the NSPS is to attain and maintain ambient air quality by ensuring that the best-demonstrated emissions control technologies are installed as the industrial infrastructure is modernized. Final NSPS (and revisions and amendments) have been issued for a wide variety of source categories since 1990 (see Table 1).

In addition to the NSR, PSD, and NSPS provisions, the 1990 CAAA also established a program for controlling volatile organic compounds (VOC) emissions from consumer and commercial products to reduce the contribution of these emissions to nonattainment of the ozone NAAQS. EPA issued VOC standards for architectural coatings and automobile refinish coatings in 1998. Under these rules, manufacturers and importers must limit the VOC content of subject coatings to the VOC content levels indicated by the standards. The architectural coatings rule is somewhat unique in that it offers an economic incentive by providing manufacturers and importers with an alternative compliance mechanism under which they can choose to pay a fee of $2,500 per ton of VOC in excess of the standard in lieu of meeting the VOC content limits for their coating products.

9The review here does not cover those actions that EPA takes to clarify requirements under the NAAQS, or guidance for aspects of implementation and monitoring requirements. However, these actions can have significant implications for states as they prepare their SIPs.

10VOC emissions, along with NOx emissions, are important precursors to ozone formation in urban areas.
Table 1: Final new source performance standards issued since 1990

<table>
<thead>
<tr>
<th>Year</th>
<th>Final NSPS Source Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>Municipal Waste Combustors (revisions)</td>
</tr>
<tr>
<td>1996</td>
<td>Municipal Solid Waste Landfills</td>
</tr>
<tr>
<td>1997</td>
<td>Medical Waste Incinerators</td>
</tr>
<tr>
<td></td>
<td>Municipal Waste Combustors (amendments)</td>
</tr>
<tr>
<td></td>
<td>Phosphate Fertilizer Industry (revisions)</td>
</tr>
<tr>
<td>1998</td>
<td>New Fossil-Fuel Fired Steam Generating Units (revisions)</td>
</tr>
<tr>
<td>1999</td>
<td>Amendment to Electric ARC Furnace NSPS</td>
</tr>
<tr>
<td>2004</td>
<td>Industrial-Commercial-Institutional Steam Generating Units</td>
</tr>
<tr>
<td>2005</td>
<td>Commercial and Industrial Solid Waste Incineration Units</td>
</tr>
<tr>
<td>2006</td>
<td>Electric Utility Steam Generating Units</td>
</tr>
<tr>
<td></td>
<td>Large Municipal Waste Combustors (amendments)</td>
</tr>
<tr>
<td></td>
<td>Stationary Compression Ignition Internal Combustion Engines</td>
</tr>
<tr>
<td></td>
<td>Electric Utility, Industrial-Commercial-Institutional, and Small Industrial-Commercial-Institutional Steam Generating Units (reconsideration)</td>
</tr>
<tr>
<td></td>
<td>Stationary Spark Ignition Internal Combustion Engines</td>
</tr>
<tr>
<td></td>
<td>Other Solid Waste Incinerators (reconsideration)</td>
</tr>
<tr>
<td>2008</td>
<td>Petroleum Refineries</td>
</tr>
<tr>
<td>2009</td>
<td>Nonmetallic Minerals Processing Plants (e.g., Quarrying and Mining)</td>
</tr>
<tr>
<td></td>
<td>Stationary Combustion Turbines</td>
</tr>
</tbody>
</table>

Source: Federal Register.

EPA has also established a number of regional programs to address emissions that may affect attainment of NAAQS in downwind states. These programs, which evolved from the ARP mandated under Title IV of the 1990 CAAA, are addressed in the discussion of regional control programs.

Motor Vehicles and Fuel Standards (Title II)

The federal government has the primary responsibility for regulating emissions from mobile sources. As discussed in the previous section, Title II of the CAA governs mobile source emissions. These provisions were modified under the 1990 CAAA, resulting in the set of mobile source regulations that have been issued over the past two decades, including adjustments to the tailpipe standards for cars and light trucks, establishment of cold start standards, clean fuels regulations, PM standards for buses, regulation of mobile source air toxics, banning of lead in gasoline, and standards for nonroad engines.

One of the most important developments in recent air quality management is the focus on regulating direct vehicle emissions in conjunction with fuels. A number of regulations have been developed in the last two decades to reduce substantially the emissions from mobile sources through a combination of improved emissions control devices and changes in the sulfur content of fuels. Lowering sulfur levels in gasoline and diesel fuel directly reduces PM emissions and enables manufacturers to install emissions control devices which would otherwise be contaminated by the sulfur in the fuels. The suite of vehicle and fuel standards enacted by EPA covers a wide range of mobile sources, including light- and heavy-duty gasoline engines, onroad and nonroad diesel vehicles, and a number of additional mobile source categories, including small recreational vehicles, locomotives, marine engines, and
lawn and garden equipment. Because the fuels and engines used by onroad and nonroad mobile sources differ, separate regulations were issued to address each combination of fuels and engines.

An important element of mobile source regulations is the timing of expected implementation. Because mobile source standards generally apply to new vehicles (there are separate mobile source programs to address retrofits), it can take decades to fully realize the reductions in emissions from the total fleet of mobile sources. Fuel standards can be implemented more quickly, but the full benefit of these fuel changes will not be realized until the entire vehicle fleet is equipped with the new emissions control technologies. For most of the standards enacted by EPA, full implementation is expected to occur by 2030 or later.

A summary of individual mobile source rules and the year they were issued is provided below.11

Light Duty Vehicles (1999). These rules set new tailpipe standards at an average of 0.07 grams of NOx per mile for all classes of passenger vehicles beginning in 2004 (phased in through 2009 for heavier trucks). This includes all light-duty trucks, as well as the largest sport utility vehicles. In addition, in order to improve the effectiveness of NOx control devices, a complementary fuel sulfur program was established that reduced sulfur content by up to 90 percent by capping nationwide average sulfur levels in gasoline at 30 ppm starting in 2007.12

Onroad Heavy-Duty Engines (2000). This rule set standards for engines of heavy-duty vehicles (e.g., trucks and buses) based on the use of high-efficiency catalytic exhaust emissions control devices. In order to preserve the effectiveness of the control devices, which is adversely affected by sulfur in fuel, the rule also reduced the levels of sulfur in on-road diesel fuel by 97 percent relative to pre-2007 engines.

The rule sets a PM emissions standard for new heavy-duty engines to take full effect for diesels in the 2007 model year. The NOx and nonmethane hydrocarbons (NMHC) standards are phased in between 2004 and 2007. The rule also requires heavy-duty gasoline engines to meet the standards with full compliance by 2009.13

Recreational Vehicles (2002). This rule provided emissions standards for a variety of nonroad vehicles, including industrial nonroad vehicles (e.g., forklifts, electric generators, and airport baggage transport vehicles), recreational vehicles (e.g., snowmobiles and all terrain vehicles), and recreational boats (Regulatory Announcement: Emission Standards for New Non-Road Engines 2002). The rule set standards for NOx, NMHC, and CO, with the standards varying by type of engine.

The emissions standards are projected to result in an overall 72 percent reduction in hydrocarbon (HC) emissions from recreational vehicle engines, an 80 percent reduction in NOx emissions, and a 56 percent reduction in CO emissions by 2020.

11EPA has also issued regulations dealing with other aspects of mobile source emissions. These are summarized in the online supplementary materials for this article. A complete listing of mobile source regulations is available online (Federal Register Notices for Mobile Sources (Title II)—Proposed and Final Preambles and Rules 1991–2000).

12The rule is available online (Tier 2 Vehicle and Gasoline Sulfur Program, Final Rule 2007).

13The rule is available online (Clean Diesel Trucks, Buses, and Fuel: Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements 2007).
Nonroad Diesel (2004). Over 650,000 pieces of nonroad diesel equipment are sold in the United States per year, and there are about 6 million pieces of nonroad diesel equipment currently in use, accounting for 58 percent of diesel PM and 25 percent of NOx from mobile sources nationwide (Clean Air Nonroad Diesel Rule—Facts & Figures http://www.epa.gov/nonroad-diesel/2004fr/420f04037.htm). The Clean Air Nonroad Diesel rule reduced the sulfur content of nonroad diesel fuel from an uncontrolled level of approximately 3,400 ppm to 500 ppm beginning in 2007 and then to 15 ppm (in 2010 for land-based nonroad diesel fuel and in 2012 for fuel used in locomotives and marine vessels)—a 99 percent reduction. The rule is expected to cut emissions levels from construction, agricultural, and industrial diesel-powered equipment by over 90 percent when fully implemented.14

Mobile Source Air Toxics (2007). The Mobile Source Air Toxics (MSAT) rule is a combined fuel and engines rule. It requires that, beginning in 2011, refiners meet an annual average gasoline benzene content standard of 0.62 percent by volume on all their gasoline nationwide. Refiners must also meet a maximum average benzene standard of 1.3 percent by volume beginning in 2012, although they can meet this standard through banking, averaging, and trading.

In addition to the fuel standards, the MSAT rule sets NMHC exhaust emissions standards for passenger vehicles and trucks up to 8,500 pounds, and it sets more stringent evaporative emissions standards for new passenger vehicles (Control of Hazardous Air Pollutants from Mobile Sources: Final Rule to Reduce Mobile Source Air Toxics 2007). The new evaporative emissions standards are equivalent to California’s standards and will be phased in between 2010 and 2013 for the lighter vehicles, and between 2012 and 2015 for the heavier vehicles.

Locomotive and Large Marine Engines (2008). This rule sets emissions standards for NOx and PM for new and rebuilt locomotive and large marine engines (Emissions Standards for Locomotives and Marine Compression-Ignition Engines 2008). The rule is phased in for different tiers of engines produced during different time periods. The most stringent standards (Tier 4) will be in place for engines produced in 2015 and beyond. When fully implemented, the standards are expected to result in a 90 percent reduction in PM emissions and an 80 percent reduction in NOx emissions from these sources, compared with an uncontrolled baseline in 2030.

Nonroad Small Spark Ignition Engines, Equipment, and Vessels (2008). This rule sets new standards for emissions of HC, NOx, and CO for small engines such as lawn and garden equipment, utility vehicles, generators, and a variety of other construction, farm, and industrial equipment (Emission Standards for New Nonroad Spark-Ignition Engines, Equipment, and Vessels 2008). The rule also sets standards for engines used in marine vessels, including outboard engines, personal watercraft, and sterndrive/inboard engines. The specific standards vary by engine and vehicle type. When fully implemented, the standards for nonmarine sources are expected to decrease combined HC and NOx exhaust emissions by 35 percent and reduce evaporative emissions by 45 percent, compared with an uncontrolled baseline in 2030. The standards for marine spark ignition engines are expected to decrease combined HC and NOx exhaust emissions by 70 percent and CO exhaust emissions by 50 percent. The standards will also result in a 60 percent reduction in combined HC and NOx emissions from

14Details of the rule are available online (Clean Air Nonroad Diesel—Tier 4, Final Rule 2004).
outboard and personal watercraft engines. The standards will reduce evaporative emissions from marine sources by about 70 percent.

Addressing the Air Toxics Problem (Title III)

Air toxics rules account for a large portion of EPA’s air program rulemaking activities over the past two decades. EPA has implemented key air toxics provisions of the 1990 CAAA by issuing 96 MACT standards that apply to 174 industrial source categories. While each standard has a unique time line for implementation, EPA estimates that these regulatory actions will ultimately result in a nationwide reduction of about 1.7 million tons of HAPs per year (http://www.epa.gov/tnn/atw/allabout.html). However, significant work remains to fully address the legislative requirements for HAPs under the 1990 CAAA.

One requirement where some work remains involves the need to issue standards for stationary area source categories identified for regulation due to their toxic emissions and potential health risks in urban areas. The 1990 CAAA requires EPA to identify at least 30 air toxics that pose the greatest potential health threat in urban areas (EPA has identified 33) and to regulate the area source categories that represent 90 percent of these emissions. To date EPA has identified 70 area source categories, of which 54 have been regulated. Standards for the remaining categories are under development.

Because EPA had fallen behind in meeting its area source obligations, a court order was issued to ensure that reasonable progress was being made (Sierra Club v. Johnson 2006). To comply with the court order, EPA must issue 10 rules every six months, beginning in December 2006. By the end of 2009, all but three of the 70 area source rules will be completed. While negotiations continue on the deadlines for industrial boilers, commercial/institutional boilers, and sewage sludge incineration, these remaining rules are expected to be promulgated in 2011.

Another area where work remains is review of the Residual Risk and Technology Rules (RTR) that are mandated eight years after an MACT standard is issued. The 1990 CAAA requires a comprehensive assessment of exposures and risks associated with emissions from MACT-regulated source categories and the development of revised standards if significant health risks remain or if improved control technologies are available.

Evolution of Regional Control Programs

In recognition of the continuing environmental damages associated with acid deposition, Title IV of the 1990 CAAA included provisions to achieve deep reductions in SO₂ and NOₓ emissions. By adding Title IV to the CAA and establishing the ARP to reduce emissions of SO₂ and NOₓ from electric generating units (EGU), the CAAA changed the very nature of air pollution regulations through the introduction of market-based emissions reductions programs. These programs have been successful in reducing SO₂ and NOₓ emissions in a

15 A complete list of MACT standards is available online (National Emission Standards for Hazardous Air Pollutants 2009).

16 The RTRs completed to date are listed online (Risk and Technology Review 2009).
highly cost-effective manner (Chestnut and Mills 2005), resulting in substantial air quality, health, and environmental benefits.\(^{17}\)

Based on the success of the ARP, EPA has issued other market-based regulations (i.e., the NO\(_x\) Budget Trading Program, trading programs under CAIR—the Clean Air Interstate Rule) to reduce regional emissions of SO\(_2\) and NO\(_x\), to both reduce acid deposition and attain the PM\(_{2.5}\) and ozone NAAQS. In addition, EPA has established the regional haze program to improve visibility in national parks and wilderness areas. These regulations affect sources throughout the United States and are expected to have large environmental and health benefits relative to their costs (Chestnut and Mills 2005).

The four major regional emissions reduction programs—the ARP, the NO\(_x\) Budget Trading Program, CAIR, and the Regional Haze Rule (now known as the Clean Air Visibility Rule)—are discussed in more detail below.

The ARP

Unlike most programs, the ARP was established directly by Title IV of the CAAA and did not require specific regulations. Instead, Congress directly set the cap on SO\(_2\) emissions and established a trading program that is managed by EPA. The ARP began in 1995, and the SO\(_2\) cap-and-trade program currently affects over 3,500 U.S. EGU. The ARP also established a rate-based NO\(_x\) control program that affects a subset of approximately 1,000 coal-fired EGU.\(^{18}\)

The cap-and-trade program for SO\(_2\) emissions was the first federal regulation of its kind. It allocates a fixed number of allowances to utilities (most based on historic fuel consumption and some by auction) and then allows utilities to buy and sell allowances to cover their SO\(_2\) emissions. Utilities can choose to reduce emissions below their allocated number of allowances and sell the extra allowances to generate revenues, or they can buy extra allowances on the market if the cost of reducing their emissions is higher than the market allowance price. The program allows sources to bank allowances for use in future years, thereby encouraging early reductions by utilities with highly cost-effective reduction opportunities.

The ARP set a long-term cap on SO\(_2\) emissions from EGU at 8.95 million tons, to be reached by 2010. This represents a reduction in SO\(_2\) emissions of 6.7 million tons (42 percent) relative to SO\(_2\) emissions in 1990. The NO\(_x\) provisions of the ARP set rate limits to achieve a 2 million ton reduction in NO\(_x\) relative to projected 2000 emissions levels without the ARP in place. The program allowed for limited flexibility in meeting the NO\(_x\) standards, using averaging of rates across groups of units.

The ARP used a two-phase approach to achieve the final emissions levels for NO\(_x\) and SO\(_2\). The first phase of the SO\(_2\) program applied primarily to the largest coal-fired EGU from 1995–1999, and the second phase began in 2000, expanding coverage to smaller units and tightening the SO\(_2\) cap on covered sources. The first phase of the NO\(_x\) program also applied primarily to larger coal-fired units during 1996–1999, and was expanded to cover smaller sources starting in 2000.

\(^{17}\)See the Clean Air Markets web site for details on programs’ effectiveness: http://www.epa.gov/airmarkets/index.html.

\(^{18}\)Additional details on the ARP and its accomplishments can be found in the Acid Rain and Related Programs 2007 Progress Report, available online (Acid Rain and Related Programs: 2007 Progress Report 2009).
The NOx Budget Trading Program

In the mid-1990s, EPA recognized that many areas in the eastern United States were having difficulty attaining the ozone NAAQS due to pollution transport from sources in upwind states. In response, EPA established the Ozone Transport Assessment Group (OTAG), a partnership between EPA, thirty-seven eastern states and the District of Columbia, industry representatives, and environmental groups, to assess regional air quality problems and develop consensus solutions.

In 1998, based on an improved understanding of ozone transport issues, and under the authority of Title I of the CAAA, EPA issued a call for state implementation plans (SIPs) to reduce emissions of NOx, a precursor to ozone formation. This rule, known as the NOx SIP Call, applied to twenty eastern states and required the states to meet NOx emissions budgets. However, states were allowed to choose the control strategies to meet those budgets. The NOx SIP Call offered states the option of participating in a regional NOx Budget Trading Program covering NOx emissions from EGU and large industrial boilers and turbines, which would allow states to achieve over 90 percent of the NOx SIP Call reductions in a highly cost-effective way. EPA administered the trading program, and states shared responsibility with EPA by allocating allowances, inspecting and auditing sources, and enforcing the program.19

The date for compliance with the rule varied by state, from 2003 to 2007. The NOx Budget Trading Program was discontinued beginning with the 2009 ozone season, when EPA began administering the NOx ozone season trading program under CAIR. EPA offered states the option of including their NOx SIP Call trading sources in the CAIR trading program.

CAIR

In 1997, EPA set significantly tighter standards for ozone and PM, creating new challenges for many urban areas due to the contribution of upwind sources to downwind nonattainment with the ozone and PM NAAQS. To address this issue, EPA developed a new set of regulations based on the successful ARP and NOx Budget Trading Program. This set of regulations, known as CAIR, was issued in 2005 under the authority of Title I of the CAAA, and is expected to significantly improve air quality in many eastern urban nonattainment areas.

CAIR creates three separate trading programs: an annual NOx program, an ozone season NOx program (complementing the existing NOx Budget Trading Program), and an annual SO2 program (which reduces SO2 emissions below the existing ARP cap). Similar to the NOx SIP Call, CAIR gives eastern states the flexibility either to submit a specific set of control strategies that meets their NOx and SO2 budgets, or to participate in federally administered regional cap-and-trade programs for NOx and SO2. All states have opted to participate in the regional cap-and-trade program.

Starting in 2009 and 2010, CAIR establishes regional caps on annual NOx and SO2 emissions and on summertime NOx emissions in the eastern United States. Annual SO2 emissions for affected eastern states are capped at 3.7 million tons in 2010 and 2.6 million tons in 2015. Annual NOx emissions for affected eastern states are capped at 1.5 million tons in 2009 and

19Details on the NOx Budget Trading Program and its accomplishments can be found in the program’s latest progress report (NOx Budget Trading Program: Compliance and Environmental Results 2008).
1.3 million tons in 2015. By 2015, this represents a reduction in EGU SO$_2$ of over 43 percent, and a reduction in EGU NO$_x$ of over 41 percent.

Recently, there has been some uncertainty regarding the implementation of CAIR. On July 11, 2008, the U.S. Court of Appeals for the DC Circuit issued a ruling voiding CAIR. However, on December 23, 2008, the Court allowed implementation of CAIR to continue while EPA considered alternatives. According to EPA, “development and finalization of a replacement rule could take about two years.”

The Regional Haze and Clean Air Visibility Rules

Section 169A of the CAA sets forth a national goal for visibility, which is the “prevention of any future, and the remedying of any existing, impairment of visibility in Class I areas (national parks and wilderness areas offered special protection under the CAA) which impairment results from man-made air pollution.” In 1999, EPA issued the Regional Haze Rule, which required states to submit plans to implement strategies to achieve the national goal.

The Regional Haze Rule requires states to set “reasonable progress goals,” which are interim visibility improvement goals aimed at returning visibility in Class I areas to natural conditions, or those visibility conditions that existed before man-made air pollution. These goals are set to improve visibility on the haziest days and to ensure that visibility does not worsen on the best (cleanest) visibility days. While specific controls are not identified by the Regional Haze Rule, it does require states to develop enforceable strategies to meet the progress goals that address air pollution from all types of sources that emit visibility-impairing pollutants.

The Regional Haze Rule also requires states to submit plans identifying best-available retrofit technologies (BART) that can be applied to existing sources, the emissions reductions that would be achieved by applying BART, and the limits on individual sources that would be required under BART. In 2005, EPA amended the Regional Haze Rule, and the rule became known as the Clean Air Visibility Rule (CAVR). The amendments included guidelines for states to use in determining which facilities must install controls to meet the BART requirements. BART addresses SO$_2$, NO$_x$, and PM emissions from twenty-six sectors, including EGU.

In 2006, EPA issued an additional rule, Revisions to Provisions Governing Alternative to Source-Specific Best Available Retrofit Technology (BART) Determinations, which allowed states to implement programs in lieu of BART provided the alternative program was demonstrated to achieve greater progress than case-specific BART. This rule allowed western states to submit plans that implemented the recommendations of the Grand Canyon Visibility Transport Commission within the framework of, and meeting the requirements of, the Regional Haze Rule (Report of the Grand Canyon Visibility Transport Commission to the United States Environmental Protection Agency 1996). The recommendations included a program to reduce SO$_2$ emissions to 1990 levels by the year 2040 via interim milestones requirements or declining caps.

20Details on the CAIR rule and subsequent regulatory actions are available online (Clean Air Interstate Rule 2009).
21See http://www.epa.gov/air/interstateairquality/.
22More details on rules and other actions related to EPA’s regional haze program are available online (Visibility 2009).
Stratospheric Ozone Protection

In 1987, twenty-seven countries, including the United States, signed the Montreal Protocol on Substances That Deplete the Ozone Layer (Montreal Protocol on Substances That Deplete the Ozone Layer 1987). Today, 191 countries have ratified the protocol, committing to production targets that continue to evolve with new science and emergence of alternative technologies. By the time Congress passed the 1990 CAAA, U.S. scientists, government agencies, businesses, and environmental organizations had taken a leading role in identifying the urgency of stratospheric ozone depletion and mobilized the international response. Consistent with this leadership, Title VI of the CAAA went beyond merely codifying the Montreal Protocol into U.S. law to provide a regulatory framework for aggressive and comprehensive reductions in ozone-depleting substances. This framework includes phaseout of the key ozone-depleting substances (ODS) by 2000, with limited exceptions for production for critical uses (e.g., medical devices); phaseout of hydrochlorofluorocarbons (HCFCs) by 2020; market-based trading permitting transfer of production and import allowances; and requirements for recycling of equipment and alternatives to ODS. The detailed elements of this framework are presented in Table 3 in the online supplementary materials for this article.

In 1990, stratospheric ozone depletion had become one of the most recognized threats to the global environment. Twenty years later, due to the success of the Montreal Protocol and strong domestic legislation, worldwide emissions of ozone-depleting substances have begun to stabilize, large increases in ground-level UV radiation have been prevented, and the ozone layer is projected to return to pre-1980 levels sometime between 2060 and 2075 (Scientific Assessment of Ozone Depletion, GORMP Report No. 50 2007).

Conclusions

Air pollution regulations in the United States are many, covering most sectors of our economy. Clean Air Act regulations have improved and will continue to improve public health and environmental quality. From 1970 to 2007, air regulations reduced emissions of the six principal criteria pollutants while U.S. gross domestic product increased by over 200 percent (National Air Quality: Status and Trends through 2007, 2008). The most recent regulations (since 2000), including the diesel regulations and CAIR, by themselves are expected to result in over 40,000 premature deaths avoided annually at full implementation and over $280 billion in annual monetized benefits from health and environmental improvements (Nonroad Diesel Rule RIA 2004, CAIR RIA, 2005). The Office of Management and Budget (OMB) prepares a report to Congress each year on the costs and benefits of all federal regulations. These reports have consistently found EPA air regulations to account for the largest share of both costs and benefits across all federal regulations. In the 2008 report, OMB reports annual benefits of air programs to be between $70 billion and $573 billion, and annual costs to be between $26 billion and $29 billion (Office of Management and Budget 2009), a clear indication that air regulations provide large net benefits to society.

23This range is based partly on OMB assumptions about uncertainty concerning the value of mortality risk reductions.
Regulation and Progress under the 1990 Clean Air Act Amendments

CAA authorities and programs are chiefly one-pollutant programs, and criteria pollutant emissions programs are separate from programs addressing air toxics emissions. However, many industries emit multiple pollutants; for instance, coal-fired boilers used in many industries and the power sector emit SO$_2$, NO$_x$, PM, CO, and mercury, as well as CO$_2$. Because of rising cost curves for controlling pollution from multiple facilities, EPA and other regulators are increasingly turning to multipollutant approaches, which focus attention on an entire source (i.e., multiple processes and emissions points rather than individual processes and emissions). From an engineering perspective, these approaches employ control technologies and methods that optimize control of multiple pollutants for the least possible cost. In addition, these approaches can reduce the regulatory burden for the regulated industry, improve compliance with control requirements, and ultimately lead to more timely and cost-effective improvements in air and environmental quality.

There are benefits of reducing air pollution that go beyond the obvious public health and welfare benefits. More attention is being paid to understanding and addressing the sources and emissions of greenhouse gases. Because sources of traditional air pollutants are also often sources of greenhouse gases, efforts to optimize control through the multipollutant approaches described above could be integrated with analysis that describes (qualitatively and quantitatively) and optimizes the cobenefits of these approaches for both climate and air quality. A major challenge is addressing the differences in the scale and timing of benefits related to reductions in air pollution (which are local and regional in scale and immediate) and reductions in greenhouse gases (which are global in scale and long-term).

Air quality management in the United States has evolved significantly over the past two decades as a result of advances in our understanding of the complexities of sources, emissions, transport, and effects of air pollution, as well as how to cost-effectively improve air quality. This evolutionary process continues as new science emerges and new ways of approaching the management and control of air pollution are developed. As EPA moves forward in addressing the environmental challenges of the next few decades, including climate change, attaining more health-protective NAAQS, and addressing multipollutant problems in heavily populated urban areas, it does so with the benefit of four decades of regulatory experience, including twenty years of experience in implementing innovative rules and regulations under the 1990 CAAA.

References

Clean Air Act Amendments. August 7, 1977. 95–95.

